Contract No.: EP-W-09-002 WA #: 023-RARA-02PE

Region 2 RAC2 Remedial Action Contract

Sustained Yield Test Technical Memorandum

Old Roosevelt Field Contaminated Groundwater Area Superfund Site Remedial Action Garden City, Long Island, NY

November 9, 2011

Table of Contents

Section		ned Yield Test Design, Equipment, and Sampling	
	2.1	Sustained Yield Test Design	
	2.2	Water Level Monitoring Locations and Equipment Deployment	
	2.3	Pumps, Flow Meters, and Water Treatment	2-2
	2.4	Groundwater Quality Sampling	2-2
Section	3 – Aquife	r Testing	3-1
	3.1	Step Drawdown Test Design	3-1
	3.2	Sustained Yield Test	3-1
	3.2.1	Garden City Production Well Monitoring	3-1
	3.2.2	Groundwater Sampling	3-2
	3.2.3	Manual Water Level Monitoring	3-2
	3.2.4	Precipitation and Barometric Pressure	3-2
Section	4 – Data A	nalysis and Results	4-1
	4.1	Hydrogeologic Conceptual Model	4-1
	4.2	Background Water Level Monitoring	4-1
	4.3	Step Test Analysis	4-2
	4.4	Sustained Yield Test Analysis	4-2
	4.5	Extraction Well Sustained Yield Test Analysis	4-3
	4.6	Distance Drawdown Analysis	4-4
	4.7	Well GWP-10 Test Analysis	4-4
	4.8	Extraction Well Pumping Influence on Monitoring Wells	4-4
	4.9	Use of the Sustained Yield Test Results in the Groundwater Flow M	lodel .4-5
	E 0 l	sions	5 4

Tables

- 2-1 Transducer Deployment Information
- 3-1 Step and Pump Test Flow Rate Information and Specific Capacity Data
- 3-2 Water Quality Parameters
- 3-3 Manual Water Level Observations
- 4-1 Well Information and Aguifer Test Analysis Input Parameters
- 4-2 Model Layer and Aquifer Test Well Screen Information
- 4-3 Aquifer Test Analysis Results
- 4-4 Distance Drawdown Data for Extraction Well and Well GWP-10 Pumping
- 4-5 Comparison of Aquifer Test Analysis Results and Model Layer K Values

Figures

- 2-1 Sustained Yield Test Monitoring and Pumping Well Location Map
- 2-2 Geologic and Groundwater Flow Model Cross Section
- 4-1 Well SVP-10 Water Level Data
- 4-2 Well EW-1I Step Test Water Level Data
- 4-3 Well SVP-10, Port 3 Data Analysis: Extraction Well Pumping
- 4-4 Distance Drawdown Graph: Extraction Well Pumping
- 4-5 Well SVP-10, Port 3 Data Analysis: Well GWP-10 Pumping

Appendices

- Appendix A

 Appendix B

 Appendix C

 Appendix C

 Appendix D

 Sustained Yield Test Water Level and Flow Rate Data

 Appendix E

 Appendix E

 Appendix F

 Appendix G

 Appendix G

 Appendix G

 SVP-10 Transducer Deployment Information

 Pump and Flow Meter Information

 Step Test Water Level and Flow Rate Data

 Weather Data

 Appendix F

 Appendix G

 Step Test Analyses
- Appendix H Extraction Well Pumping Well Data Analyses
- Appendix I GWP-10 Pumping Well Data Analyses
- Appendix J Simulation of Aquifer Test and Model Refinement Memorandum

Section 1 Introduction

CDM Federal Programs (CDM) is conducting a Remedial Action at the Old Roosevelt Field Contaminated Groundwater Area Superfund Site (the site) located in Garden City, New York, for the U.S. Environmental Protection Agency (EPA), Region 2, under Work Assignment (WA) 023-RARA-02PE of the Remedial Action Contract (RAC) 2, Contract No. EP-W-09-002. To support construction of the groundwater extraction and treatment system, CDM conducted a sustained yield test, as detailed in the Remedial Design, Section 02525, Well Installation, for the Old Roosevelt Field Contaminated Groundwater Area Superfund Site. The objectives of the sustained yield test were as follows:

- Test the capacity of extraction wells EW-1S, EW-1I, and EW-1D to meet their design flow requirements.
- Obtain site specific aguifer hydraulic parameter data to verify values used in the groundwater flow model of the site.
- Obtain baseline specific capacity data for each extraction well.

This memorandum summarizes the sustained yield test design, equipment, methods, sampling, data analysis, and results. The observed test results are compared to the original design assumptions and the aguifer parameters used in the numerical groundwater flow model. Work was conducted in accordance with Section 02525 except that the flow rates used in the step-drawdown and sustained yield tests were increased, as discussed in this memorandum, to help meet project objectives. Sampling work discussed in this memorandum was conducted in accordance with the Final Quality Assurance Project Plan (QAPP), Old Roosevelt Field Contaminated Groundwater Area Site Remedial Action, Garden City, NY dated May 24, 2010 (CDM 2010a).

Section 2 Sustained Yield Test Design, Equipment, and Sampling

2.1 Sustained Yield Test Design

The sustained yield test consisted of the following elements:

- Background water level monitoring at selected wells from August 4, 2010 through September 7, 2010.
- Groundwater quality sampling to provide data for final treatment system design.
- Step-drawdown tests conducted on extraction wells EW-1S, EW-1I, and EW-1D on August 30, September 1, and September 2, 2010.
- Sustained yield test (pumping test) conducted from September 7 to September 10, 2010 during which the three extraction wells were pumped simultaneously at flow rates above their design capacity.
- Recovery water level monitoring from September 10 through September 13, 2010.

2.2 Water Level Monitoring Locations and Equipment Deployment

Starting on August 4, 2010, In-Situ® transducers were installed in eight conventional monitoring wells (MW-1S, MW-1I, MW-2S, MW-2I, MW-3S, MW-3I, GWX-10019, and GWX-10020) and five Westbay wells (SVP-2, SVP-3, SVP-4, SVP-9, and SVP-11). The Westbay wells were converted to monitoring wells by opening one pumping port in each well. Table 2-1 lists the conventional wells, the port opened on the Westbay wells, the dates of transducer deployment and recovery, and the data collection rate. The week before step testing began, In-Situ® transducers were also deployed in the three extraction wells (EW-1S, EW-1I, and EW-1D). Westbay wells SVP-5 and SVP-10 were each instrumented with five Westbay transducers to provide a vertical profile of water level data close to the extraction wells. The data from the Westbay transducers were stored on a Westbay Mosdax recorder installed in a weather proof metal box at each well. Earth Data, Inc., under subcontract to CDM, and their lower tier subcontractor Schlumberger, provided technical support and equipment to deploy the transducers in wells SVP-5 and SVP-10 and to open the pumping ports on the other Westbay wells used as monitoring wells. Well SVP-5 and SVP-10 transducer deployment information is included in Appendix A. The locations of all wells used for water level monitoring are shown on Figure 2-1. The cross section shown in Figure 2-2 trends north-south through the site and illustrates the groundwater flow model layers, site stratigraphy, and hydrogeologic conceptual model. The location of monitoring well GWX-10019, multiport wells SVP-4, SVP-9 and SVP-10, the extraction wells EW-1S and EW-1D, and Garden City municipal supply well GWP-10 are shown on the cross section with respect to the model layers. The location of the cross section shown on Figure 2-2 is shown on Figure 2-1.

2.3 Pumps, Flow Meters, and Water Treatment

Pumps used in the three extraction wells were Myers Ranger, 4-inch submersible pumps. The pumps were provided and installed by Uni-Tech, Inc. under subcontract to CDM. Uni-Tech also provided a trailer-mounted diesel generator to supply power to the pumps as well as flow meters with a digital readout of total and instantaneous flow. The pump specifications and flow meter calibration information are included in Appendix B. Water generated during the sustained yield test was piped to a temporary onsite treatment system operated by INTEX under subcontract to Uni-Tech. The system had a capacity of 250 gallons per minute (gpm). Water was pumped from the wells into a 20,000 gallon holding tank, treated using granulated activated carbon, and then piped to the storm drain on Clinton Road, west of the extraction wells. The storm drain runs into Nassau County Recharge Basin 124, located south of the Garden City wells and outside the area of influence of the extraction wells. Figure 2-1 shows the location of Clinton Road and the recharge basin.

2.4 Groundwater Quality Sampling

To provide data for treatment system design, four sets of groundwater samples were collected during the sustained yield test: 1) at the completion of well development; 2) at the end of the step test on each well, 3) at the start of the pumping phase of the sustained yield test, and 4) at the end of the sustained yield test. Samples were shipped on the day of sampling via FedEx to the EPA Division of Environmental Science and Assessment (DESA) laboratory in Edison, New Jersey. CDM used the sampling results to determine that an iron removal system was not needed as part of the final treatment system. This recommendation regarding treatment system. design and a summary of the sample results were conveyed in a letter to the EPA Remedial Project Manger (CDM 2010b).

The first set of samples was collected from each well after development of wells EW-1S, EW-1I and EW-1D was completed. Samples were collected from a sample port on the development pump discharge line from each well. Samples were analyzed for EPA Target Compound List (TCL) volatile organic compounds (VOCs), total iron (Fe) and manganese (Mn), and field filtered Fe and Mn. Three environmental samples were collected in accordance with the QAPP.

The second sample was collected after the step test was completed at wells EW-1S, EW-1I and EW-1D. Samples were collected from a sample port on the pump discharge line. Samples were analyzed for TCL VOCs, total Fe and Mn, and filtered Fe and Mn. Three environmental samples were collected in accordance with the QAPP.

The third and fourth sets of samples were collected during and at the end of the 72-hour drawdown phase of the sustained yield test. Samples were collected from four points: a sample port installed on each of the three wells before the flow meter and a fourth sample port on the common header that combined the discharge from all three wells. The first sample set (A) was collected between 4.5 and 6.5 hours after the yield test started; the second sample set (B) was collected at the conclusion of the sustained yield test. Samples were analyzed for TCL VOCs, total EPA Target Analyte List (TAL) metals (including mercury and cyanide), filtered TAL metals, total suspended solids (TSS), total dissolved solids (TDS), hardness, alkalinity, nitrate/nitrite, and oil and grease. Eight environmental samples were collected in accordance with the QAPP.

Section 3 Aquifer Testing

3.1 Step Drawdown Testing

The design flow rate of wells EW-1S and EW-1I is 60 gpm, while the design flow rate of well EW-1D is 80 gpm. The original step test design called for flow rates ranging from 0.5 to 1.33 times the design flow rate at wells EW-1S and EW-1I, and 0.5 to 1.75 times the design flow rate at well EW-1D. However, high flow rates with relatively little drawdown were observed at all three extraction wells during well development. Therefore, the step test plan was revised and the wells were pumped at the higher rates listed on Table 3-1 during the step test. Each step was two hours long. Higher flow rates were used to maximize the drawdown produced during the step test and thereby produce the most useful results.

Step tests were conducted at wells EW-1S, EW-1I and EW-1S on August 30, September 1, and September 2, 2010, respectively. At the conclusion of the step test at each well, a water sample was collected and sent to DESA laboratory for analysis as detailed in Section 2.3. Manual observations of flow rates and water levels in the extraction wells were made during the step tests and are included in Appendix C.

The flow rate and drawdown data from the step test were reviewed by CDM and the flow rates for the sustained yield test were set at 70 gpm for wells EW-1S and EW-1I and at 110 gpm for well EW-1D. This was done to maximize the stress applied to the aquifer.

3.2 Sustained Yield Test

Before the sustained yield test began, the water level recording rate was changed from 10 minute to 1 minute intervals on the transducers in most of the observation wells as listed on Table 2-1, to better capture water level changes in the wells. The sustained yield test started at 10:30 am on Tuesday, September 7, 2010, when all three extraction wells were switched on at the same time. Flow rates had been preset before the start of the test at 70 gpm for wells EW-1S and EW-1I and at 110 gpm for well EW-1D. Flow rates and water levels in the extraction wells were monitored manually at 15 minute intervals throughout the test. At least three people were onsite 24 hours per day during the sustained yield test to monitor the flow rate and water levels in the extraction and monitoring wells. Flow rates were adjusted as needed to keep them constant during the test. The manual flow rate and water level observations are included in Appendix D. The pumping phase of the test stopped after 72 hours at 10:30 am on Friday September 10, 2010.

3.2.1 Garden City Production Well Monitoring

During the sustained yield test, water levels and flow rates were monitored manually at two nearby Garden City municipal wells, GWP-10 and GWP-11. Water level indicators were installed in each well. During the first two hours of pumping, water levels were monitored at 1 minute intervals for the first

ten minutes and then at 10 minute intervals. After the first two hours, the water level and flow rates were checked every two hours until the end of the pumping phase. During the first two hours of recovery, water levels were monitored at 1 minute intervals for the first ten minutes and then at 10 minute intervals. After the first two hours of recovery, the water level and flow rates were checked every two hours until the late afternoon on Friday September 10, 2010. The flow meter on well GWP-10 was not working, so the on or off status of the well was recorded when the water level was measured. CDM consulted with Garden City Water Department and they reported the flow rate for well GWP-10 was 1,000 gpm. The flow meter on well GWP-11 was working and the well was on throughout the test, and pumped at a rate of about 1,200 gpm. Observations from well GWP-10 and GWP-11 are included in Appendix D.

3.2.2 Groundwater Sampling

As discussed above, groundwater samples were collected during and at the end of the 72-hour sustained yield test, in accordance with the QAPP. Samples were collected from four points: a sample port installed on each of the three wells, before the flow meter, and from a sample port on the common header which combined the discharge from all three wells. The first sample set (A) was collected between 4.5 and 6.5 hours after the yield test started; the second sample set (B) was collected at the conclusion of the yield test. The water quality parameters measured during sample collection are listed in Table 3-2.

3.2.3 Manual Water Level Monitoring

Manual water level monitoring was conducted periodically, before and during the sustained yield test, to check transducer function. All transducers functioned normally throughout the test. The manual observations are included in Table 3-3.

3.2.4 Precipitation and Barometric Pressure

Precipitation and barometric pressure data, for the period including background monitoring through the completion of the sustained yield test recovery, was obtained from the weather station KNYCARLE1, located near the site in Carle Place, New York. A total of 2.7 inches of rain was recorded during the background monitoring period on August 22, 2010, and 0.06 inches of rain was recorded on September 8, 2010, the second day of the sustained yield testing. Hydrographs indicate that precipitation did not impact water levels at site significantly during the pumping or recovery phases of the sustained yield test. These data are included in Appendix E.

Section 4 **Data Analysis and Results**

4.1 Hydrogeologic Conceptual Model

The hydrogeologic conceptual model for the site is illustrated in Figure 2-2 and shows the Upper Glacial aquifer, the Upper, Middle, and Basal Magothy aquifer, and the Raritan Clay. This conceptual model has been implemented in the groundwater flow model by dividing the system into 14 layers. After review of the drawdown data plots and the lithologic and gamma log data, CDM identified a local aquitard that, where present, separates the overlying Upper Glacial Aquifer from the underlying Magothy Formation. Lithologic data showed the aquitard thickness was typically 10 to 20 feet but ranged in thickness from 10 to 33 feet. This aguitard is located in Layer 12 of the groundwater flow model, which represents the Upper Magothy aquifer, and is assigned a horizontal hydraulic conductivity (K) of 60 feet/day and anisotropy ratio (vertical hydraulic conductivity, K₂/horizontal hydraulic conductivity, K) of 0.01 in the model. This K value is representative of the bulk K of the unit, which is about 100 feet thick, and not the K of local, relatively thin units like the aguitard. The aquitard was not included in the groundwater flow model due to its uncertain lateral and vertical extent and lack of information on its hydrogeologic properties.

The aquifer thickness used in the data analysis and to calculate K was defined as the distance from the bottom of the aquitard to the top of the Raritan Clay. The average thickness across the wells used in the sustained yield test was 452 feet. Details on well construction, elevation, and aguifer thickness for all pumping and observation wells are listed in Table 4-1. The groundwater flow model layers screened by each well used as a pumping or observation well during the aguifer test are listed on Table 4-2.

The three EW extraction wells, Garden City municipal wells GWP-10 and GWP-11, and most of the observation wells are completed in the Middle Magothy aguifer. The shallowest port, Port 10, in wells SVP-5 and SVP-10 is completed in the Upper Glacial aquifer. The deepest port, Port 1, in well SVP-10 is completed in the Basal Magothy aguifer.

Based on the existing groundwater flow model of the site, previous experience in the area, stratigraphy, and storativity values calculated from displacement data collected during this test, CDM selected a leaky-confined model for analysis of most of the sustained yield test data. Data from some shallow monitoring wells were analyzed assuming unconfined conditions because this model provided the best fit to the data. An anisotropy ratio of 0.01 was used in all analysis.

4.2 Background Water Level Monitoring

The background water level monitoring data were reviewed and showed that the pumping at Garden City municipal well GWP-10 significantly influences water levels in all the observation wells used during the sustained yield test. This is illustrated in the graph of water level data from the five zones (ports) monitored in well SVP-10 shown in Figure 4-1. The on/off cyclic pumping at well GWP-10

causes a variation of approximately 2 feet in the water levels observed at well SVP-10 in Ports 1, 3, and 5, which are in the same depth range as well GWP-10. The shallow zone, Port 8, is less influenced but still shows the regular pattern of drawdown caused by well GWP-10 turning on and off. The shallowest zone, Port 10, shows no significant influence from pumping in well GWP-10, probably because this zone is in the Upper Glacial Aquifer (see Figure 2-2). During the sustained yield test, well GWP-11 was observed to run all the time. Therefore, it was assumed in the analysis that well GWP-11 pumped at a constant rate before, during, and after the test and therefore did not cause any significant drawdown. Hydrographs of all the data from each well, including the background monitoring period and the sustained yield test period are included in Appendix F.

4.3 Step Test Analysis

The step test data were analyzed using the Hantush-Jacob method for step test analysis (Hantush and Jacob 1955) as implemented in Agtesolve (Hydrosolve 2011). Figure 4-2 shows a graph of the drawdown data from well EW-1I during the step test. Transmissivity values ranging from 27,160 feet²/day to 57,850 feet²/day were calculated based on the step tests. Using an aquifer thickness of 452 feet, K values ranging from 60 to 128 feet/day were calculated. Storativity values ranged from 5.58x10⁻¹ to 2.46x10⁻¹. These results are consistent with a leaky confined aquifer conceptual model. Plots of these analyses are included in Appendix G and the results are listed in Table 4-3. The displacement data observed during each step were used to calculate baseline specific capacity values, which are listed in Table 3-1.

4.4 Sustained Yield Test Analysis

Since production well GWP-11 was running before, during, and after the test at a constant flow rate, the well was left out of the analysis because it had no real effect on water levels in the observation wells. In the case of well GWP-10, it was pumping at 10:30 am on Tuesday September 7, when extraction well pumping started, and the well cycled on and off before, during, and after the test. To accommodate pumping at well GWP-10 into the analysis, CDM moved the start time of the sustained yield test back to 3:00 am on Tuesday September 7, 2010 which was when well GWP-10 started pumping immediately prior to the start of extraction well testing. This is practical but arbitrary because well GWP-10 cycled on and off for a long period well before the extraction well pumping started. The on/off cycling of well GWP-10 was incorporated into Aqtesolv which uses superposition to calculate the effect of multiple pumping wells on drawdown in observation wells. The start and stop times for the pump at well GWP-10 were estimated from water level data graphs from nearby observation wells and water level monitoring at well GWP-10.

The pumping period of the sustained yield test is clearly visible in the graph of data from SVP-10 shown in Figure 4-1. When the sustained yield pumping started, the water level in Ports 3 and 5 dropped by about 2 feet because these zones are close to and in the same elevation range as the screened zones in the nearby extraction wells. The water level in Port 1, the deepest zone, was less affected, while the water levels in the shallow zones, Ports 8 and 10 were not impacted.

The water level displacement observations from the extraction wells and observation wells during the sustained yield test were analyzed using Agtesolv Professional software (HydroSOLVE 2011). Table 4-1 lists the well information and aquifer test analysis input parameters used in Agtesolv. Based on site conditions, a leaky confined aquifer model was assumed and the Hantush-Jacob (1955)/Hantush (1964) solution for a pumping test in a leaky aguifer was applied to estimate aquifer parameters. In Agtesolv, this solution also incorporates wells with partial penetration (Hantush 1961a, 1961b). Assumptions of this method are as follows:

- Aquifer has infinite areal extent
- Aquifer is homogeneous and of uniform thickness

- Pumping well is fully or partially penetrating
- Flow to pumping well is horizontal when pumping well is fully penetrating
- Aquifer is leaky confined
- Flow is unsteady
- Water is released instantaneously from storage with decline of hydraulic head
- Diameter of pumping well is very small so that storage in the well can be neglected
- Confining bed(s) has infinite areal extent, uniform vertical K and uniform thickness
- Confining bed(s) is overlain or underlain by an infinite constant-head plane source
- Flow is vertical in the aquitard(s)

These assumptions are generally met by the site conditions because the study area is small relative to the large portion of Long Island underlain by the Magothy Formation; in the study area the aquifer thickness average is 452 feet, as shown in Table 4-1, with little variation; all pumping and observation wells were partially penetrating; and the aquifer can be considered leaky confined.

4.5 Extraction Well Sustained Yield Test Analysis

Plots of the analyses conducted using Aqtesolv on data collected during the extraction well sustained yield test are included in Appendix H. An example of the plot of the analysis of data from well SVP-10, Port 3 is show in Figure 4-3. Elapsed time starts when well GWP-10 turned on at 3:00 am on Tuesday September 7, 2010. The three extraction wells were turned on at 10:30 am that morning, at an elapsed time of 450 minutes, where a jump in drawdown is observed in Figure 4-3. These analyses included pumping from the three extraction wells and well GWP-10. The flow rate at well GWP-10 was assumed to be 1,000 gpm based on discussions with the water department. The on/off times for well GWP-10 were estimated by CDM from water level data collected in wells EW-1D and GWX-10019. Well EW-1D is relatively close to well GWP-10 and is completed in the same elevation range. Well GWX-10019 is the closest observation well to well GWP-10. The influence of well GWP-10 made the analyses more complex because the water level changes caused by well GWP-10 tend to mask changes caused by pumping at the extraction wells. In general, the water level graphs indicate that the change caused by the extraction well pumping occurred quickly and that, if well GWP-10 were not pumping, a new steady state probably would have been achieved within 8 to 24 hours of the start of pumping.

The results of the analysis of the water level displacement observations during the extraction well sustained yield test are summarized in Table 4-3. Transmissivity values ranged from 18,130 feet²/day to 82,430 feet²/day, with a median value of 48,180 feet²/day. Storativity values ranged from 3x10⁻⁴ to 1.53x10⁻³ with a median value of 8.15x10⁻⁴. Using an aquifer thickness of 452 feet, K values were calculated and ranged from 40 to 182 feet/day, with a median value of 107 feet/day. These results are consistent with a leaky confined aquifer conceptual model.

In Table 4-3, the observation wells are sorted by the following depth intervals: shallow, intermediate, and deep. These intervals correspond to the respective extraction well screened intervals. Table 4-3 also includes the model layers screened by each well.

4.6 Distance Drawdown Analysis

To estimate the extent of the influence from the extraction wells, a distance drawdown plot was prepared using the maximum displacement caused by extraction well pumping at a time of 4,320 minutes after extraction well pumping started. The data used are listed in Table 4-4. The distance drawdown plot is shown in Figure 4-4. Separate plots were prepared for shallow, intermediate, and deep wells. In the case of the shallow wells, drawdown was less than that observed in the intermediate and deep wells because of the significant vertical distance between the screens in these wells and the extraction wells. In all three cases, the distance drawdown plot indicates the extent of influence of the three extraction wells is between 1,300 and 2,000 feet.

4.7 Well GWP-10 Test Analysis

To check the results of the analysis conducted on the extraction well test data, background monitoring period water level data from selected wells were analyzed using Aqtesolv Professional using only well GWP-10 as a pumping well. An example of the plot of the analysis of data from well SVP-10, Port 3 is show in Figure 4-5. This was done to take advantage of the influence of pumping at well GWP-10 observed in many of the observation wells. Water level data from wells GWX-10019 and EW-1D, the closest wells to well GWP-10, were reviewed to estimate when well GWP-10 was on and off. Well GWX-10019 is screened above well GWP-10 and well EW-1D is screened over a similar elevation interval as well GWP-10. A flow rate of 1,000 gpm was assigned to well GWP-10. Based on observations during the sustained yield test, well GWP-11 was assumed to run constantly at a rate of 1,200 gpm during the observation period and was, therefore, not included in the analysis. The same interval of data was selected from each observation well for analysis. This interval covered a period of about 1,000 minutes and included one cycle where pumping at well GWP-10 started and then terminated at 750 minutes. The Aqtesolv analyses are included in Appendix I and the results of these analyses are shown in Table 4-3.

The results of the analysis of the water level displacement observations during the pumping at well GWP-10 are summarized in Table 4-3. Transmissivity values ranged from 18,770 feet /day to 77,190 feet /day, with a median value of 34,470 feet²/day. Storativity values ranged from 3.93x10⁻⁴ to 2.36x10⁻³, with a median value of 1.16x10⁻³. Using an aquifer thickness of 452 feet, K values were calculated and ranged from 42 to 171 feet/day with a median value of 76 feet/day.

When compared to the results from the extraction well analysis, the range of transmissivity and conductivity values from the extraction well and well GWP-10 analyses are similar but the median values for the well GWP-10 analyses are lower. The median transmissivity values calculated from the extraction well and well GWP-10 analyses are, respectively, 48,015 feet²/day and 34,470 feet²/day. The median K values calculated from the extraction well and well GWP-10 analyses are, respectively, 107 feet/day and 76 feet/day. These results are consistent with a leaky confined aquifer conceptual model. The results from the well GWP-10 and sustained yield test analysis are in general agreement. However, if the flow rate of well GWP-10 is not equal to the reported value of 1,000 gpm this would be one reason why these results differ.

In Table 4-3, the observation wells are sorted by the following depth intervals: shallow, intermediate, and deep. These intervals correspond to the respective extraction well screened intervals.

4.8 Extraction Well Pumping Influence on Monitoring Wells

Monitoring well clusters MW-1S/I, MW-2S/I, and MW-3S/I were installed to monitor the capture zone which is expected to develop after the extraction wells begin operation. The locations of the wells, shown on Figure 2-1, were chosen based on simulations of the capture zone using the groundwater flow model before the sustained yield test was conducted.

Each well cluster consists of a shallow (S) well with a 10-foot screen targeted at the -150 foot elevation and an intermediate (I) well with a 10-foot screen targeted at the -225 foot elevation (Table 4-1). These elevations correspond, respectively, to the approximate midpoint of the shallow extraction well, EW-1S, and intermediate extraction well, EW-1I, screened zones. The MW-01 cluster was installed approximately 280 feet northeast of the extraction wells and is intended to provide water level data inside the extraction well capture zone. The MW-02 cluster is located approximately 720 feet east-northeast of the extraction wells and is intended to monitor the width of the extraction well capture zone. The MW-03 cluster, located approximately 1,870 feet east-southeast of the extraction wells, is intended to provide water level data outside the capture zone of the extraction wells and Garden City supply wells GWP-10 and GWP-11.

While the 72-hour sustained yield test is not long enough to allow the full capture zone to develop, the drawdown data were checked to see if the extraction wells are influencing water levels in the monitoring wells. The water level fluctuation caused by pumping at well GPW-10 and the additional drawdown caused by extraction well pumping during the sustained yield test are clearly visible on the graph of water level data from wells MW-1S and MW-1I, which are included in Appendix F. Drawdown in well MW-1S attributable to extraction well pumping was 0.42 feet, and was observed within the first 1.5 hours of the test. Drawdown in well MW-1I attributable to extraction well pumping was 0.50 feet, and was observed within the first 1.5 hours of the test.

The water level fluctuation caused by pumping at well GPW-10 and the additional drawdown caused by extraction well pumping during the sustained yield test are also visible on the graph of water level data from wells MW-2S and MW-2I, which are included in Appendix F. However, the drawdown caused by the extraction well is significantly smaller than the drawdown in the MW-1S/I cluster. This is to be expected since this well cluster is about 2.5 times as far from the extraction wells as the well MW-1S/I cluster. Drawdown in well MW-2S attributable to extraction well pumping was 0.15 feet, and was observed within the first 1.5 hours of the test. Drawdown in well MW-2I attributable to extraction well pumping was 0.22, feet and was also observed within the first 1.5 hours of the test.

The water level fluctuation caused by pumping at well GPW-10 is clearly visible on the graph of water level data from wells MW-3S and MW-3I which are included in Appendix F. The extraction well pumping did not appear to cause any drawdown in either well MW-3S or well MW-3I. These results indicate that this well cluster should provide useful data, as intended, outside of the extraction well capture zone.

As discussed below, the sustained yield test was simulated using the groundwater flow model developed during the Feasibility Study. The results of the modeling indicate that the drawdown values simulated at well clusters MW-01S/I and MW-02S/I are in good agreement with the observed values, particularly during the cycling of GWP-10. Attached in Appendix J is the modeling technical memorandum, *Simulation of Aquifer Test and Model Refinement (April 2011)*, which was prepared by CDM.

4.9 Use of the Sustained Yield Test Results in the Groundwater Flow Model

The groundwater flow model was developed and used during the Feasibility Study to simulate the capture zone of various configurations of groundwater pumping wells and flow rates. The sustained yield test was simulated using the model as an additional means (other than groundwater head) to verify the hydraulic properties originally used in the Feasibility Study. Simulated changes in groundwater head were compared to water levels observed in wells during the background monitoring, when only well GWP-10 was running, and during the sustained yield test and hydraulic properties within the model were adjusted accordingly.

The sustained yield test was initially simulated using the K values and other aguifer parameters that were used during the Feasibility Study simulations. Under this scenario, the model predicted more drawdown in wells than was observed during the sustained yield test. This indicated that the model K in some layers was too low and needed to be increased. Additional lithologic data and gamma logs that were collected during the installation of the extraction wells and following the FS were reviewed and a relatively sandy layer was identified in the middle Magothy aquifer. The lateral extent of this unit is not well defined due to a lack of data, but was estimated by correlating the lithologic log and gamma log data collected during installation of the extraction wells to other gamma logs within the study area.

The hydraulic conductivity of this sandy layer within the middle Magothy was increased from an original value of 40 feet/day to 80 feet/day. This unit is identified in Table 4-5 as the "coarse zone" in the middle Magothy aquifer. This higher K improved the match between observed and predicted drawdown. A sensitivity analysis was conducted using K values of up to 180 feet/day for this coarse zone. The K value of 180 feet/day generally provided the best fit to data from well SVP-10, close to the extraction wells, but did not significantly improve the fit to data from other wells. A value of 180 feet/day is considered very high for the Magothy based on regional data (Smolensky et al. 1989).

The K values calculated from well GWP-10 pumping and from the sustained yield test are listed in Table 4-3 along with the final K values used in the respective model layer screened by the well. Table 4-5 compares the calculated K values, the original model values, and the revised model K values. The K values calculated from well GWP-10 pumping and the sustained yield test support the use of higher K values in the groundwater flow model.

To evaluate the effect of a range of K values on the extraction well capture zone, the groundwater flow model was used to simulate three scenarios: 1) the original aquifer parameters, 2) a K value of 80 feet/day assigned to the middle Magothy coarse zone and 3) a K value of 180 feet/day assigned to the middle Magothy coarse zone. These simulations show that as hydraulic conductivity increases the capture zone narrows and lengthens. The groundwater modeling procedures and results are discussed in detail in the Simulation of Aquifer Test and Model Refinement technical memorandum prepared by CDM which is included as Appendix J.

Section 5 Conclusions

The sustained yield test on extraction wells EW-1S, EW-1I, and EW-1D was successful and achieved its objectives.

- Extraction wells EW-1S, EW-1I, and EW-1D have the capacity to meet their design flow requirements.
- The hydraulic conductivity values calculated based on the sustained yield test were higher than those used in the original design, therefore the capture zones created by the extraction wells may be narrower than the original design. The width of the capture zone can be increased by increasing the flow rate.
- The distance drawdown plot indicates the extent of influence of the three extraction wells pumping together is between 1,300 and 2,000 feet. The extent of influence will be greatest in the upgradient direction.
- Transmissivity values calculated from the extraction well sustained yield test ranged from 18,130 feet²/day to 82,430 feet²/day with a median value of 48,180 feet²/day. Storativity values ranged from 3x10⁻⁴ to 1.53x10⁻³ with a median value of 8.15x10⁻⁴. Hydraulic conductivity values ranged from 40 to 182 feet/day with a median value of 107 feet/day.
- Transmissivity values calculated from well GWP-10 pumping data ranged from 18,770 feet²/day to 77,190 feet²/day with a median value of 34,470 feet²/day. Storativity values ranged from 3.93x10⁻⁴ to 2.36x10⁻³ with a median value of 1.16x10⁻³. Hydraulic conductivity values ranged from 42 to 171 feet/day with a median value of 76 feet/day.
- The range of transmissivity and conductivity values calculated from the extraction well and well GWP-10 data are similar, but the median values for well GWP-10 are lower. The median transmissivity values calculated from the extraction well and well GWP-10 analyses are, respectively, 48,015 feet²/day and 34,470 feet²/day. The median hydraulic conductivity values calculated from the extraction well and well GWP-10 analyses are, respectively, 106 feet/day and 76 feet/day. Overall, these results are consistent with a leaky confined aquifer conceptual model.
- The baseline specific capacity data for extraction wells EW-1S, EW-1I, and EW-1D are, respectively, 17 gpm/foot of drawdown, 24 gpm/foot of drawdown, and 24 gpm/foot of drawdown. These values are derived from the sustained yield test. Higher specific capacities were calculated from the step test data. The maximum specific capacity values calculated from step test data for extraction well EW-1S, EW-1I, and EW-1D were, respectively, 24 gpm/ft of drawdown, 31 gpm/ft of drawdown, and 28 gpm/ft of drawdown. The high specific capacity and relatively small drawdown observed in the extraction wells during the sustained yield test indicate that, if necessary, the extraction wells can be pumped at a higher flow rate.

If municipal wells GWP-10 and GWP-11 continue to pump at the rates and schedules observed during the sustained yield test, then the effect of pumping at these wells should be a constant in the aquifer system and, therefore, they should not impact the extraction well operation.

Section 6 References

CDM 2010a. Final Quality Assurance Project Plan, Old Roosevelt Field Contaminated Groundwater Area Site Remedial Action, Garden City, New York. CDM, Inc. Edison, NJ. May 24, 2010.

CDM 2010b. Iron Removal System, Old Roosevelt Field Contaminated Groundwater Area Site Remedial Action, Garden City, New York. Letter to EPA Remedial Project Manager. Document Control Number 33220.023.00589. CDM, Inc. Edison, NJ. October 7, 2010.

HydroSOLVE, Inc. 2011. Agtesolv Software Professional version 4.50. Reston, VA.

Hantush, M.S. and C.E. Jacob, 1955. Non-steady radial flow in an infinite leaky aquifer, American Geophysical Union Transactions., vol. 36, pp. 95-100.

Hantush, M.S., 1961a. Drawdown Around a Partially Penetrating Well, Journal. of the Hydraulic Division, Proceedings of the American Society of Civil Engineering, vol. 87, no. HY4, pp. 83-98.

Hantush, M.S., 1961b. Aquifer Tests on Partially Penetrating Wells, Journal. of the Hydraulic Division, Proceedings of the American Society of Civil Engineering., vol. 87, no. HY5, pp. 171-194.

Hantush, M.S., 1964. Hydraulics of Wells, in: Advances in Hydroscience, V.T. Chow (editor), Academic Press, New York, pp. 281-442.

Smolensky, Douglas A., Buxton, Herbert T., and Shernoff, Peter K. 1989. Hydrologic Framework of Long Island, New York. Hydrologic Atlas 709. United States Geologic Survey, Reston, VA.

Tables

Table 2-1 Transducer Deployment Information Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Well	Transducer Type	Date Installed	Sampling Rate (minutes)	Date Removed
MW-1S	In-Situ	8/4/10	10 (background),1 (during pump test)	9/20/10
MW-1I	In-Situ	8/4/10	10 (background), 1 (during pump test)	9/20/10
MW-2S	In-Situ	8/4/10	10 (background), 1 (during pump test)	9/20/10
MW-2I	In-Situ	8/4/10	10 (background), 1 (during pump test)	9/20/10
MW-3S	In-Situ	8/4/10	10	9/20/10
MW-3I	In-Situ	8/4/10	10	9/20/10
GWX-10019 (N-10019)	In-Situ	8/4/10	10 (background), 1 (during pump test)	9/20/10
GWX-10020 (N-10020)	In-Situ	8/4/10	10 (background), 1 (during pump test)	9/20/10
SVP-5, Ports 10, 8, 5, 3, and 1	Westbay MOSDAX	8/23/10	10 (background), 1 (during pump test)	9/13/10
SVP-10, Port 10, 8, 5, 3, and 1	Westbay MOSDAX	8/23/10	10 (background), 1 (during pump test)	9/13/10
EW-1S	In-Situ	8/24/10	10 (background), 1 (during pump test)	9/13/10
EW-1I	In-Situ	8/24/10	10 (background), 1 (during pump test)	9/13/10
EW-1D	In-Situ	8/24/10	10 (background), 1 (during pump test)	9/13/10
SVP-2, Port 4	In-Situ	8/24/11	10 (background),1 (during pump test)	9/13/10
SVP-3, Port 3	In-Situ	8/24/11	10 (background), 1 (during pump test)	9/13/10
SVP-4, Port 6	In-Situ	8/24/11	10 (background), 1 (during pump test)	9/13/10
SVP-9, Port 5	In-Situ	8/24/11	10 (background), 1 (during pump test)	9/13/10
SVP-11, Port 2	In-Situ	8/23/11	10	9/10/11

Table 3-1
Step and Pump Test Flow Rate Information and Specific Capacity Data
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York

Well	Step/Phase	Multiple of Design Flow Rate	Flow Rate (gpm)	Displacement (feet)	Specific Capacity (gpm/ft of drawdown)
EW-1S	1	0.7	40	2.14	19
EW-1S	2	1	60		See note
EW-1S	3	1.3	75	3.26	23
EW-1S	4	1.5	90	3.78	24
EW-1I	1	0.7	40	1.35	30
EW-1I	2	1	60	1.91	31
EW-1I	3	1.3	75	2.4	31
EW-1I	4	1.5	90	2.97	30
EW-1D	1	0.8	60	2.45	24
EW-1D	2	1.3	100	3.9	26
EW-1D	3	1.8	140	5.46	26
EW-1D	4	2.3	180	6.53	28
EW-1S	Pump Test	1.2	70	4.06	17
EW-1I	Pump Test	1.2	70	2.90	24
EW-1D	Pump Test	1.4	110	4.53	24

Note: Experienced recovery during this step, did not calculate specific capacity

Well	Design Flow Rate (gpm)
EW-1S	60
EW-1I	60
EW-1D	80

gpm - gallons per minute

Table 3-2 Water Quality Parameters Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Location	Date and Time	Temperature (degree C)	Specific Conductance (ms/cm)	Dissolved Oxygen (mg/l)	pH (SU)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
Combined Flow (from all 3 extraction wells)	9/7/10 3:00 PM	16.04	0.448	6.66	4.62	226.7	0.46
Combined Flow	9/7/10 3:05 PM	16.01	0.446	5.2	4.58	229.1	0.44
Combined Flow	9/7/10 3:10 PM	16.05	0.448	4.52	4.58	230.4	0.48
EW-1S	9/7/10 3:45 PM	17.55	0.628	6.25	4.53	228.9	0.33
EW-1S	9/7/10 3:50 PM	17.55	0.628	5.2	4.51	233.4	0.44
EW-1S	9/7/10 4:00 PM	17.52	0.626	4.68	4.49	240.5	0.48
EW-1S	9/7/10 4:10 PM	17.42	0.623	4.48	4.89	245.4	0.46
EW-1I	9/7/10 4:35 PM	16.02	0.359	5.13	4.75	216.4	0.55
EW-1I	9/7/10 4:40 PM	16.04	0.358	3.62	4.62	221.8	0.45
EW-1D	9/7/10 5:00 PM	14.65	0.334	4.36	4.21	218.2	0.41
EW-1D	9/7/10 5:05 PM	14.6	0.334	3.54	4.66	222.3	0.73
Combined Flow	9/10/10 8:10 AM	15.55	0.422	9.77	4.8	193.5	0.57
Combined Flow	9/10/10 8:15 AM	15.59	0.421	9.1	4.77	195.4	0.77
Combined Flow	9/10/10 8:20 AM	15.58	0.42	7.3	4.76	195.9	0.56
EW-1S	9/10/10 8:35 AM	16.89	0.55	9.5	4.7	196.9	0.72
EW-1S	9/10/10 8:40 AM	16.86	0.55	8.31	466	199.4	0.64
EW-1S	9/10/10 8:45 AM	16.84	0.548	7.65	4.65	201.8	0.59
EW-1S	9/10/10 8:50 AM	16.84	0.548	7.21	4.64	202.5	0.59
EW-1I	9/10/10 9:00 AM	15.68	0.345	4.87	4.78	138.4	0.6
EW-1I	9/10/10 9:05 AM	15.66	0.344	4.47	4.77	193.2	0.77
EW-1I	9/10/10 9:10 AM	15.69	0.344	4.2	4.72	192.7	0.61
EW-1D	9/10/10 9:15 AM	14.4	0.351	5.22	4.78	193.1	0.53
EW-1D	9/10/10 9:20 AM	14.41	0.35	4.51	4.77	194.5	0.81
EW-1D	9/10/10 9:25 AM	14.41	0.351	4.37	4.77	194.6	0.68
EW-1D	9/10/10 9:30 AM	14.42	0.35	4.28	4.78	194.7	0.61

Table 3-3 Manual Water Level Observations Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Well ID	Date	Ground Surface Elevation (ft msl) NGVD29	Temporary Stickup (feet above ground surface)	Stickup (feet)	Sanitary Seal Thickness (feet)	DTW (feet below TIC)	Pressure Head (psi)	Height of Water Column Above the Transducer (feet)	DTW (adjusted to ground surface)	Water Level Elevation (feet amsl)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Top of Screen (feet amsl)	Bottom of Screen (feet amsl)
EW-1D	8/30/10 11:23 AM	88.12	0.5	N/A	N/A	35.98	29.59	68.32	35.48	52.64	350	410	-262	-322
EW-1D	9/7/10 9:41 AM	88.12	0.5	n/a	n/a	36.30	29.44	68.00	35.80	52.32	350	410	-262	-322
EW-1I	8/30/10 11:33 AM	88.12	0.25	n/a	n/a	35.15	29.50	68.09	34.90	53.22	280	340	-192	-252
EW-1I	9/7/10 9:47 AM	88.12	0.25	n/a	n/a	35.55	29.36	67.81	35.30	52.82	280	340	-192	-252
EW-1S	8/30/10 11:48 AM	88.12	1.05	n/a	n/a	34.21	27.65	63.82	33.16	54.96	210	270	-122	-182
EW-1S	9/7/10 9:51 AM	88.12	1.05	n/a	n/a	34.67	27.46	63.42	33.62	54.50	210	270	-122	-182
GWX-10019	8/4/10 11:28 AM	86.64	n/a	-0.33	0.04	30.64	17.79	41.07	30.97	55.67	223	228	-136	-141
GWX-10019	8/30/10 11:15 AM	86.64	n/a	-0.33	0.04	30.61	17.68	40.83	30.94	55.70	223	228	-136	-141
GWX-10019	9/7/10 9:31 AM	86.64	n/a	-0.33	0.04	31.05	17.49	40.39	31.38	55.26	223	228	-136	-141
GWX-10019	9/20/10 11:09 AM	86.64	n/a	-0.33	0.04	31.22	15.18	35.04	31.55	55.09	223	228	-136	-141
GWX-10020	8/4/10 11:57 AM	82.78	n/a	0.19	0.04	26.77	19.37	44.74	26.58	56.20	186	191	-103	-108
GWX-10020	8/30/10 10:07 AM	82.78	n/a	0.19	0.04	26.88	19.34	44.66	26.69	56.09	186	191	-103	-108
GWX-10020	9/7/10 8:52 AM	82.78	n/a	0.19	0.04	27.43	19.10	44.12	27.24	55.54	186	191	-103	-108
GWX-10020	9/20/10 11:24 AM	82.78	n/a	0.19	0.04	27.62	16.16	37.32	27.43	55.35	186	191	-103	-108
MW-1I	8/4/10 1:21 PM	86.62	n/a	-0.36	0.04	32.05	16.36	37.76	32.41	54.21	305	315	-218	-228
MW-1I	8/30/10 10:48 AM	86.62	n/a	-0.36	0.04	32.31	16.31	37.65	32.67	53.95	305	315	-218	-228
MW-1I	9/7/10 8:32 AM	86.62	n/a	-0.36	0.04	32.62	16.18	37.36	32.98	53.64	305	315	-218	-228
MW-1I	9/20/10 10:56 AM	86.62	n/a	-0.36	0.04	32.77	16.12	37.23	33.13	53.49	305	315	-218	-228
MW-1S	8/4/10 1:05 PM	86.62	n/a	-0.31	0.04	30.89	16.83	38.86	31.20	55.42	235	245	-148	-158
MW-1S	8/30/10 10:41 AM	86.62	n/a	-0.31	0.04	31.17	16.78	38.74	31.48	55.14	235	245	-148	-158
MW-1S	9/7/10 8:30 AM	86.62	n/a	-0.31	0.04	31.51	16.64	38.42	31.82	54.80	235	245	-148	-158
MW-1S	9/20/10 10:48 AM	86.62	n/a	-0.31	0.04	31.68	16.57	38.25	31.99	54.63	235	245	-148	-158
MW-2I	8/4/10 12:21 PM	87.12	n/a	-0.38	0.04	31.91	16.23	37.47	32.29	54.83	306	316	-219	-229

Table 3-3 Manual Water Level Observations Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Well ID	Date	Ground Surface Elevation (ft msl) NGVD29	Temporary Stickup (feet above ground surface)	Stickup (feet)	Sanitary Seal Thickness (feet)	DTW (feet below TIC)	Pressure Head (psi)	Height of Water Column Above the Transducer (feet)	DTW (adjusted to ground surface)	Water Level Elevation (feet amsl)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Top of Screen (feet amsl)	Bottom of Screen (feet amsl)
MW-2I	8/30/10 9:06 AM	87.12	n/a	-0.38	0.04	32.11	16.20	37.41	32.49	54.63	306	316	-219	-229
MW-2I	9/7/10 8:00 AM	87.12	n/a	-0.38	0.04	32.46	16.04	37.04	32.84	54.28	306	316	-219	-229
MW-2I	9/20/10 10:32 AM	87.12	n/a	-0.38	0.04	32.62	15.98	36.9	33.00	54.12	306	316	-219	-229
MW-2S	8/4/10 12:15 PM	87.12	n/a	-0.33	0.04	30.86	16.36	37.78	31.19	55.93	236	246	-149	-159
MW-2S	8/30/10 9:08 AM	87.12	n/a	-0.33	0.04	31.09	16.35	37.74	31.42	55.70	236	246	-149	-159
MW-2S	9/7/10 7:57 AM	87.12	n/a	-0.33	0.04	31.51	16.17	37.34	31.84	55.28	236	246	-149	-159
MW-2S	9/20/10 10:20 AM	87.12	n/a	-0.33	0.04	31.71	16.07	37.12	32.04	55.08	236	246	-149	-159
MW-3I	8/4/10 10:31 AM	85.12	n/a	-0.33	0.04	25.26	17.62	40.70	25.59	59.53	304	314	-219	-229
MW-3I	8/30/10 9:29 AM	85.12	n/a	-0.33	0.04	25.55	17.53	40.49	25.88	59.24	304	314	-219	-229
MW-3I	9/7/10 7:21 AM	85.12	n/a	-0.33	0.04	25.77	17.45	40.29	26.10	59.02	304	314	-219	-229
MW-3I	9/20/10 10:00 AM	85.12	n/a	-0.33	0.04	26.02	17.34	40.04	26.35	58.77	304	314	-219	-229
MW-3S	8/4/10 10:20 AM	85.12	n/a	-0.29	0.04	24.81	15.53	35.87	25.10	60.02	234	244	-149	-159
MW-3S	8/30/10 9:31 AM	85.12	n/a	-0.29	0.04	25.13	15.43	35.64	25.42	59.70	234	244	-149	-159
MW-3S	9/7/10 7:23 AM	85.12	n/a	-0.29	0.04	25.39	15.53	35.39	25.68	59.44	234	244	-149	-159
MW-3S	9/20/10 9:44 AM	85.12	n/a	-0.29	0.04	25.65	15.22	35.16	25.94	59.18	234	244	-149	-159
SVP-2, Port 4	8/30/10 8:39 AM	90.51	0.9	-0.07	n/a	33.68	6.43	14.86	32.78	57.73	330	335	-239	-244
SVP-2, Port 4	9/7/10 9:04 AM	90.51	0.9	-0.07	n/a	34.12	6.24	14.39	33.22	57.29	330	335	-239	-244
SVP-3, Port 3	8/30/10 8:49 AM	88.29	n/a	-0.21	n/a	31.42	8.08	18.65	31.63	56.66	370	375	-282	-287
SVP-3, Port 3	9/7/10 8:21 AM	88.29	n/a	-0.21	n/a	31.35	7.90	18.24	31.56	56.73	370	375	-282	-287
SVP-4, Port 6	8/30/10 8:20 AM	89.97	0.6	-0.36	n/a	33.47	6.27	14.49	32.87	57.10	245	250	-155	-160
SVP-4, Port 6	9/7/10 9:23 AM	89.97	0.6	-0.36	n/a	33.94	6.07	14.02	33.34	56.63	245	250	-155	-160
SVP-5, Port 10	9/7/2010 10:00	86.67	n/a	n/a	n/a	n/a	n/a	n/a	27.35	59.32	45	50	42	37
SVP-5, Port 8	9/7/2010 10:00	86.67	n/a	n/a	n/a	n/a	n/a	n/a	28.56	58.11	150	155	-63	-68

Table 3-3 Manual Water Level Observations Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Well ID	Date	Ground Surface Elevation (ft msl) NGVD29	Temporary Stickup (feet above ground surface)	Stickup (feet)	Sanitary Seal Thickness (feet)	DTW (feet below TIC)	Pressure Head (psi)	Height of Water Column Above the Transducer (feet)	DTW (adjusted to ground surface)	Water Level Elevation (feet amsl)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Top of Screen (feet amsl)	Bottom of Screen (feet amsl)
SVP-5, Port 5	9/7/2010 10:00	86.67	n/a	n/a	n/a	n/a	n/a	n/a	31.57	55.1	290	295	-203	-208
SVP-5, Port 3	9/7/2010 10:00	86.67	n/a	n/a	n/a	n/a	n/a	n/a	32.53	54.14	355	360	-268	-273
SVP-5, Port 1	9/7/2010 10:00	86.67	n/a	n/a	n/a	n/a	n/a	n/a	32	54.67	430	435	-343	-348
SVP-9, Port 5	8/30/10 9:53 AM	91.39	n/a	-0.47	n/a	32.51	6.61	15.26	32.98	58.41	285	290	-194	-199
SVP-9, Port 5	9/7/10 9:14 AM	91.39	n/a	-0.47	n/a	32.91	6.44	14.88	33.38	58.01	285	290	-194	-199
SVP-10, Port 10	9/7/2010 10:00	88.95	n/a	n/a	n/a	n/a	n/a	n/a	30.73	58.22	45	50	44	39
SVP-10, Port 8	9/7/2010 10:00	88.95	n/a	n/a	n/a	n/a	n/a	n/a	31.31	57.64	145	150	-56	-61
SVP-10, Port 5	9/7/2010 10:00	88.95	n/a	n/a	n/a	n/a	n/a	n/a	35.33	53.62	285	290	-196	-201
SVP-10, Port 3	9/7/2010 10:00	88.95	n/a	n/a	n/a	n/a	n/a	n/a	35.63	53.32	350	355	-261	-266
SVP-10, Port 1	9/7/2010 10:00	88.95	n/a	n/a	n/a	n/a	n/a	n/a	35.35	53.6	480	485	-391	-396
SVP-11, Port 2	8/30/10 5:35 PM	81.44	n/a	-0.34	n/a	30.48	18.71	43.21	30.82	50.62	400	405	-319	-324

n/a – not applicable

NGVD29 – National Geodetic Vertical Datum of 1929

Stickup – distance from the top of casing up (-) or down (+) to ground surface

amsl – above mean sea level

bgs – below ground surface

DTW – depth to water

msl - mean sea level, psi - pounds per square inch, TIC - top of inside casing

Table 4-1 Well Information and Aquifer Test Analysis Input Parameters Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Well	Zone ¹	x	Y	Surface Elevation	Depth to Water	Depth To Water Source ²	Top of Magothy, Elevation	Depth to Top of Magothy	Top of Raritan Clay, Elevation	Depth To Top of Raritan Clay	Aquitard Thickness	Depth to Bottom of Aquitard	Elevation of Bottom of Aquitard	Aquitard Thickness Source ³	b (Thickness of Magothy)	d (Distance from Water Table or Top of Magothy to TOS)	d (Distance from unit top or water table to TOS)	L Screen Length,	Casing Length	Bottom of Screen	Total Well Depth	Elevation of Top of Screen	Elevation of Bottom of Screen	r(c) Inside Radius of Casing	r(w) Radius of Well
		NAD27 feet	NAD27 feet	NGVD29 feet	feet bgs		NGVD29 feet	feet bgs	NGVD29 feet	feet bgs	feet	feet bgs	NGVD29 feet		feet	feet	feet	feet	feet	feet bgs	feet bgs	feet	feet	feet	feet
EW-1S	S	2105932.027	186070.8029	88.12	30	Α	1.39	86.73	-476	564	20	122	-34	1	442	88	180	60	210	270	275	-121.88	-181.88	0.33	0.33
EW-1I	I	2105927.568	186080.2383	88.12	30	Α	1.41	86.71	-476	564	20	122	-34	1	442	158	250	60	280	340	345	-191.88	-251.88	0.33	0.33
EW-1D	D	2105923.039	186089.3509	88.12	30	Α	1.47	86.65	-476	564	20	122	-34	1	442	228	320	60	350	410	415	-261.88	-321.88	0.33	0.33
GWP-10	D	2105573	185553	87.12	30	Α	7.41	79.71	-479	566	20	122	-35	3	444	255	347	40	377	417	417	-289.88	-329.88	0.75	0.50
GWP-11	D	2105815.125	185331.8592	85.12	30	Α	3.99	81.13	-479	564	20	122	-37	3	442	248	340	40	370	410	410	-284.88	-324.88	0.75	0.50
GWX-10019	S	2105876.582	185981.2593	86.64	30	Α	1.77	84.87	-477	564	20	122	-35	1	442	101	193	5	223	228	228	-136.36	-141.36	0.17	0.17
GWX-10020	S	2106480.132	185775.454	82.78	27	Α	0	82.78	-478	561	10	108	-25	2	453	78	159	5	186	191	191	-103	-108	0.17	0.17
MW-1S	S	2106106.468	186328.0804	86.62	27	В	6.54	80.08	-476	563	10	108	-21	2	455	127	208	10	235	245	250	-148.38	-158.38	0.17	0.17
MW-1I	I	2106083.149	186321.7465	86.62	27	В	6.48	80.14	-476	563	10	108	-21	2	455	197	278	10	305	315	320	-218.38	-228.38	0.17	0.17
MW-2S	S	2106577.529	186411.4699	87.12	27	В	0	87.12	-475	562	10	93	-6	4	469	143	209	10	236	246	251	-148.88	-158.88	0.17	0.17
MW-2I	I	2106564.064	186423.5908	87.12	27	В	0	87.12	-475	562	10	93	-6	4	469	213	279	10	306	316	321	-218.88	-228.88	0.17	0.17
MW-3S	S	2107725.893	185540.0914	85.12	27	В	4.41	80.71	-492	577	14	n/a	n/a	5	492	153	207	10	234	244	244	-148.88	-158.88	0.17	0.17
MW-3I	I	2107740.054	185546.4829	85.12	27	В	3.88	81.24	-492	577	14	n/a	n/a	5	492	223	277	10	304	314	314	-218.88	-228.88	0.17	0.17
SVP-2, Port 4	I	2106214.482	187385.7233	90.51	27	Α	20.71	69.8	-465	556	n/a	n/a	n/a	6	486	260	303	5	330	335	335	-239.49	-244.49	0.08	0.17
SVP-3, Port 3	D	2106542.341	186966.0056	88.29	27	Α	0.39	87.9	-474	562	10	93	-5	7	469	277	343	5	370	375	375	-281.71	-286.71	0.08	0.17
SVP-4, Port 6	S	2105820.762	186882.6896	89.97	27	Α	18.66	71.31	-473	563	27	121	-31	7	442	124	218	5	245	250	250	-155.03	-160.03	0.08	0.17
SVP-5, Port 10	U	2106243.192	186039.5723	86.67	27	В	0	86.67	-476	563	10	108	-21	2	455	18	18	5	45	50	50	41.67	36.67	0.08	0.17
SVP-5, Port 8	S	2106243.192	186039.5723	86.67	27	В	0	86.67	-476	563	10	108	-21	2	455	42	123	5	150	155	150	-63.33	-68.33	0.08	0.17
SVP-5, Port 5	I	2106243.192	186039.5723	86.67	27	В	0	86.67	-476	563	10	108	-21	2	455	182	263	5	290	295	290	-203.33	-208.33	0.08	0.17
SVP-5, Port 3	D	2106243.192	186039.5723	86.67	27	В	0	86.67	-476	563	10	108	-21	2	455	247	328	5	355	360	360	-268.33	-273.33	0.08	0.17
SVP-5, Port 1	D	2106243.192	186039.5723	86.67	27	В	0	86.67	-476	563	10	108	-21	2	455	322	403	5	430	435	435	-343.33	-348.33	0.08	0.17
SVP-9, Port 5	ı	2105956.767	187687.257	91.39	27	Α	20.41	70.98	-460	551	10	119	-28	7	432	166	258	5	285	290	290	-193.61	-198.61	0.08	0.17
SVP-10, Port 10	U	2105899.137	186072.6754	88.95	30	Α	1.67	87.28	-476	565	20	122	-33	1	443	15	15	5	45	50	50	43.95	38.95	0.08	0.17
SVP-10, Port 8	S	2105899.137	186072.6754	88.95	30	Α	1.67	87.28	-476	565	20	122	-33	1	443	23	115	5	145	150	150	-56.05	-61.05	0.08	0.17
SVP-10, Port 5	I	2105899.137	186072.6754	88.95	30	Α	1.67	87.28	-476	565	20	122	-33	1	443	163	255	5	285	290	290	-196.05	-201.05	0.08	0.17
SVP-10, Port 3	D	2105899.137	186072.6754	88.95	30	Α	1.67	87.28	-476	565	20	122	-33	1	443	228	320	5	350	355	355	-261.05	-266.05	0.08	0.17
SVP-10, Port 1	D	2105899.137	186072.6754	88.95	30	Α	1.67	87.28	-476	565	20	122	-33	1	443	358	450	5	480	485	485	-391.05	-396.05	0.08	0.17
SVP-11, Port 2	D	2105597.034	184603.9355	81.44	30	Α	3.45	77.99	-485	566	33	177	-96	7	389	223	370	5	400	405	405	-318.56	-323.56	0.08	0.17
														Mean	452										

bgs - below ground surface

NAD27 – North American Datum of 1927; NGVD29 – National Geodetic Vertical Datum of 1929

n/a - not applicable

^{1.} U- upper, S = shallow, I = intermediate, D = deep
2. All water level data collected in September 2010. A = SVP-10, Port 10; B = SVP-5, Port 10
3. Aquitard Thickness Data Sources: 1: Aquitard thickness data from TB-1 boring log, 4:SVP-03 gamma log, 5: No data available, assumed value of 14 feet

^{6:} No aquitard observed in data, 7:Gamma log

Table 4-2 Model Layer and Aquifer Test Well Screen Information Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Well	Zone ¹	Surface Elevation NGVD29	Top of Screen	Bottom of Screen	Elevation of Top of Screen	Elevation of Bottom of Screen	Model Layer Screened By Well	Elevation of Top of Model Layer NGVD29	Model Layer Screened By Well	Elevation of Top of Model Layer NGVD29	Model Layer Screened By Well	Elevation of Top of Model Layer NGVD29	Elevation of Bottom of Deepest Model Layer Screened by Well	Model Layer Description
		feet	feet bgs	feet bgs	feet	feet		feet		feet		feet	feet	
EW-1S	S	88.12	210	270	-121.88	-181.88	11	-101	10	-145			-189	Middle Magothy
EW-1I	I	88.12	280	340	-191.88	-251.88	9	-189	8	-215	7	-241	-268	Middle Magothy
EW-1D	D	88.12	350	410	-261.88	-321.88	7	-241	6	-268	5	-294	-333	Middle Magothy
GWP-10	D	87.12	377	417	-289.88	-329.88	6	-269	5	-295			-335	Middle Magothy
GWP-11	D	85.12	370	410	-284.88	-324.88	6	-270	5	-296			-336	Middle Magothy
GWX-10019	S	86.64	223	228	-136.36	-141.36	11	-101					-145	Middle Magothy
GWX-10020	S	82.78	186	191	-103	-108	11	-101					-146	Middle Magothy
MW-1S	S	86.62	235	245	-148.38	-158.38	10	-144					-188	Middle Magothy
MW-1I	I	86.62	305	315	-218.38	-228.38	8	-214					-241	Middle Magothy
MW-2S	S	87.12	236	246	-148.88	-158.88	10	-145					-189	Middle Magothy
MW-2I	I	87.12	306	316	-218.88	-228.88	8	-215					-242	Middle Magothy
MW-3S	S	85.12	234	244	-148.88	-158.88	10	-147					-194	Middle Magothy
MW-3I	I	85.12	304	314	-218.88	-228.88	9	-194	8	-220			-247	Middle Magothy
SVP-2, Port 4	I	90.51	330	335	-239.49	-244.49	7	-237					-264	Middle Magothy
SVP-3, Port 3	D	88.29	370	375	-281.71	-286.71	6	-266					-292	Middle Magothy
SVP-4, Port 6	S	89.97	245	250	-155.03	-160.03	10	-142					-184	Middle Magothy
SVP-5, Port 10	U	86.67	45	50	41.67	36.67	14	86.67					13	Upper Glacial
SVP-5, Port 8	S	86.67	150	155	-63.33	-68.33	12	0					-101	Upper Magothy
SVP-5, Port 5	I	86.67	290	295	-203.33	-208.33	9	-190					-216	Middle Magothy
SVP-5, Port 3	D	86.67	355	360	-268.33	-273.33	6	-268					-295	Middle Magothy
SVP-5, Port 1	D	86.67	430	435	-343.33	-348.33	4	-334					-373	Middle Magothy
SVP-9, Port 5	I	91.39	285	290	-193.61	-198.61	9	-181					-208	Middle Magothy
SVP-10, Port 10	U	88.95	45	50	43.95	38.95	14	88.95					25	Upper Glacial
SVP-10, Port 8	S	88.95	145	150	-56.05	-61.05	12	1.7					-100	Upper Magothy
SVP-10, Port 5	I	88.95	285	290	-196.05	-201.05	9	-188					-215	Middle Magothy
SVP-10, Port 3	D	88.95	350	355	-261.05	-266.05	7	-241					-268	Middle Magothy
SVP-10, Port 1	D	88.95	480	485	-391.05	-396.05	3	-373					-476	Basal Magothy
SVP-11, Port 2	D	81.44	400	405	-318.56	-323.56	5	-297					-338	Middle Magothy

U – upper, S = shallow, I = intermediate, D = deep
 Shading indicates the well did not penetrate model layer.

Table 4-3 Aquifer Test Analysis Results Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Observation Well	Zone (1)	Model Layer (2)	Pumping Well	Transmissivity, T	Storativity, S	Hydraulic Conductivity, K (feet/day)	Model	Method	Pumping Well	T [ft²/day]	Storativity, S	K (ft/day)	Method	Aquifer Property Code	Model Horizontal K (Vertical K) Values (5)	Model Storativity, S (Specific Yield, S _v)
EW-1S	S	11, 10	EW-1S, step test	27,160	5.58E-04	60	Leaky Confined (LC)	Hantush- Jacob (HJ)						348	40 (0.7)	2E-06 (0.15)
EW-1I	1	9, 8, 7	EW-1I, step test	57,850	1.61E-02	128	LC	HJ						350	80 (2)	2E-06 (0.15)
EW-1D	D	7, 6, 5	EW-1D, step test	38,580	2.46E-01	85	LC	HJ						350	80 (2)	2E-06 (0.15)
GWP-10 & Multiple Wells	s (3) Distance Dr	awdown							GWP-10	38,860	6.59E-04	86	HJ	Not Applicable		
Multiple Wells*			EW-1S, I, D and GWP-10						GWP-10	32,610	1.30E-03	72	HJ	Not Applicable		
GWX-10019	S	11	EW-1S, I, D and GWP-10	48,660	6.81E-04	108	LC	HJ	GWP-10	29,680	9.77E-04	66	HJ	348	40 (0.7)	2E-06 (0.15)
GWX-10020	S	11	EW-1S, I, D and GWP-10	74,640	7.25E-04	165	LC	HJ	GWP-10	36,880	1.14E-03	82	HJ	348	40 (0.7)	2E-06 (0.15)
MW-1S	S	10	EW-1S, I, D and GWP-10	60,510	3.00E-04	134	LC	HJ	GWP-10	34,470	7.68E-04	76	HJ	348	40 (0.7)	2E-06 (0.15)
MW-2S	S	10	EW-1S, I, D and GWP-10	46,310	1.02E-03	102	Unconfined (U)	Neuman	GWP-10	18,770	1.63E-03	42	Neuman	348	40 (0.7)	2E-06 (0.15)
MW-3S	S	10	EW-1S, I, D and GWP-10	20,500	4.11E-04	45	U	Neuman	GWP-10	(4)				348	40 (0.7)	2E-06 (0.15)
SVP-4, Port 6	S	10	EW-1S, I, D and GWP-10	18,130	8.57E-04	40	U	Neuman	GWP-10	20,600	1.06E-03	46	Neuman	348	40 (0.7)	2E-06 (0.15)
SVP-10, Port 8	S	12	EW-1S, I, D and GWP-10	20,360	3.18E-04	45	U	Neuman	GWP-10	77,190	2.34E-03	171	HJ	349	60 (0.6)	2E-06 (0.15)
EW-1I	1	9, 8, 7	EW-1S, I, D and GWP-10						GWP-10	28,560	9.50E-04	63		350	80 (2)	2E-06 (0.15)
MW-1I	1	8	EW-1S, I, D and GWP-10	48,180	7.95E-04	107	LC	HJ	GWP-10	33,270	1.34E-03	74	HJ	350	80 (2)	2E-06 (0.15)
MW-2I	1	8	EW-1S, I, D and GWP-10	50,280	1.02E-03	111	LC	HJ	GWP-10	41,220	1.16E-03	91	HJ	350	80 (2)	2E-06 (0.15)
MW-3I	1	9, 8	EW-1S, I, D and GWP-10	47,850	9.83E-04	106	LC	HJ	GWP-10	(4)				348	40 (0.7)	2E-06 (0.15)
SVP-10, Port 5	1	9	EW-1S, I, D and GWP-10	42,170	3.00E-04	93	LC	HJ	GWP-10	27,560	3.93E-04	61	HJ	350	80 (2)	2E-06 (0.15)
SVP-2, Port 4	1	7	EW-1S, I, D and GWP-10	66,800	1.53E-03	148	LC	HJ	GWP-10	37,880	1.33E-03	84	HJ	350	80 (2)	2E-06 (0.15)
SVP-9, Port 5	1	9	EW-1S, I, D and GWP-10	82,430	1.42E-03	182	LC	HJ	GWP-10	38,140	9.57E-04	84	HJ	350	80 (2)	2E-06 (0.15)
EW-1D	D	7, 6, 5	EW-1S, I, D and GWP-10						GWP-10	37,360	2.36E-03	83	HJ	350	80 (2)	2E-06 (0.15)
SVP-3, Port 3	D	6	EW-1S, I, D and GWP-10	55,430	1.38E-03	123	LC	HJ	GWP-10	38,810	1.37E-03	86	HJ	350	80 (2)	2E-06 (0.15)
SVP-10, Port 3	D	7	EW-1S, I, D and GWP-10	49,260	1.32E-03	109	LC	HJ	GWP-10	37,020	2.16E-03	82	HJ	350	80 (2)	2E-06 (0.15)
SVP-10, Port 1	D	3	EW-1S, I, D and GWP-10	41,330	8.35E-04	91	LC	HJ	GWP-10	28,180	1.85E-03	62	HJ	332	80 (1.2)	2E-06 (0.15)
SVP-11, Port 2	D	5	EW-1S, I, D and GWP-10	36,000	4.34E-04	80	LC	HJ	GWP-10	22,800	8.82E-04	50	HJ	350	80 (2)	2E-06 (0.15)
SVP-5, Port 8		12	EW-1S, I, D and GWP-10	(4)						(4)				349	60 (0.6)	2E-06 (0.15)
SVP-5, Port 5		9	EW-1S, I, D and GWP-10	(4)						(4)				350	80 (2)	2E-06 (0.15)
SVP-5, Port 3		6	EW-1S, I, D and GWP-10	(4)						(4)				350	80 (2)	2E-06 (0.15)
SVP-5, Port 1		4	EW-1S, I, D and GWP-10	(4)						(4)				348	40 (0.7)	2E-06 (0.15)
	Minimum			18,130	3.00E-04	40				18,770	3.93E-04	42			40	
	Maximum			82,430	1.53E-03	182				77,190	2.36E-03	171			80	
	Median			48,180	8.15E-04	107				34,470	1.16E-03	76				

⁽⁴⁾ Data not available during observation period
(5) K values checked in model elements within 100 feet of well

⁽¹⁾ Shallow (S), Intermediate (I), Deep (D),
(2) Model layers in depth order from shallow to deep
(3) Multiple Wells: EW-1S, EW-1I, EW-1D, GWX-10019, GWX-10020, MW-1S, MW-1I, MW-2I, SVP-3-Port 3, SVP-4, Port 6, SVP-10-Port 1, SVP-10-Port 3, SVP-10-Port 5, SVP-11-Port 2

Table 4-4 Distance Drawdown Data for Extraction Well and Well GWP-10 Pumping Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

0 7			
Shallow Zone		T =	<u> </u>
		Radial Distance (ft)	
Time (1) (min)	Well	from EW cluster	Displacement (ft)
4320	GWX-10019	111	0.78
4320	MW-1S	306	0.53
4320	MW-2S	729	0.27
4320	SVP-4, Port 6	810	0.26
Intermediate Z	one		
		Radial Distance (ft)	
Time (min)	Well	from EW cluster	Displacement (ft)
4320	SVP-10, Port 5	91	1.37
4320	MW-1I	287	0.61
4320	SVP-5, Port 5	318	0.55
4320	MW-2I	723	0.34
4320	SVP-2, Port 4	1336	0.13
4320	SVP-9, Port 5	1600	0.08
Deep Zone			
-		Radial Distance (ft)	
Time (min)	Well	from EW cluster	Displacement (ft)
4320	SVP-10, Port 3	91	1.36
4320	SVP-5, Port 3	318	0.64
4320	SVP-3, Port 3	1080	0.19

(1) Time since start of extraction well pumping

Table 4-5 Comparison of Aquifer Test Analysis Results and Model Layer K Values Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Observation Well	Model Layer	Aquifer Unit	K (feet/day) Step Test and EW's and GWP-10 Pumping	K (feet/day) GWP-10 Pumping	Original Model Horizontal K (Vertical K)	Revised Model Horizontal K (Vertical K)
SVP-10, Port 8	12	Upper Magothy	45	171	35 (0.6)	60 (0.6)
EW-1S	11, 10	Middle Magothy	60		40 (0.7)	40 (0.7)
GWX-10019	11	Middle Magothy	108	66	40 (0.7)	40 (0.7)
GWX-10020	11	Middle Magothy	165	82	40 (0.7)	40 (0.7)
MW-1S	10	Middle Magothy	134	76	40 (0.7)	40 (0.7)
MW-2S	10	Middle Magothy	102	42	40 (0.7)	40 (0.7)
MW-3S	10	Middle Magothy	45		40 (0.7)	40 (0.7)
SVP-4, Port 6	10	Middle Magothy	40	46	40 (0.7)	40 (0.7)
EW-1I	9, 8, 7	Middle Magothy, Coarse Zone	128	63	n/a	80 (2)
MW-3I	9, 8	Middle Magothy	106		40 (0.7)	40 (0.7)
SVP-10, Port 5	9	Middle Magothy, Coarse Zone	93	61	n/a	80 (2)
SVP-9, Port 5	9	Middle Magothy, Coarse Zone	182	84	n/a	80 (2)
MW-1I	8	Middle Magothy, Coarse Zone	107	74	n/a	80 (2)
MW-2I	8	Middle Magothy, Coarse Zone	111	91	n/a	80 (2)
EW-1D	7, 6, 5	Middle Magothy, Coarse Zone	85	83	n/a	80 (2)
SVP-2, Port 4	7	Middle Magothy, Coarse Zone	148	84	n/a	80 (2)
SVP-10, Port 3	7	Middle Magothy, Coarse Zone	109	82	n/a	80 (2)
SVP-3, Port 3	6	Middle Magothy, Coarse Zone	123	86	n/a	80 (2)
SVP-11, Port 2	5	Middle Magothy, Coarse Zone	80	50	n/a	80 (2)
SVP-10, Port 1	3	Basal Magothy	91	62	60 (1.2)	80 (1.2)

Blank cell: data not available or usable for analysis. n/a – not applicable, Middle Magothy, coarse zone was added to the model based on aquifer test results

Figures

Figure 2-1 Sustained Yield Test Monitoring and Pumping Well Location Map
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York
CDM

Figure 2-2
Geologic and Groundwater Flow Model Cross Section
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York

Figure 4-1
Well SVP-10 Water Level Data
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York

Figure 4-2
Well EW-1I Step Test Water Level Data
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York

Figure 4-3
Well SVP-10, Port 3 Data Analysis: Extraction Well Pumping
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York

Figure 4-4
Distance Drawdown Graph: Extraction Well Pumping
Old Roosevelt Field Contaminated Groundwater Area Superfund Site
Garden City, New York

Figure 4-5 Well SVP-10, Port 3 Data Analysis: Well GWP-10 Pumping Old Roosevelt Field Contaminated Groundwater Area Superfund Site Garden City, New York

Appendix A SVP-05 and SVP-10 Transducer Deployment Information

MOSDAX Probe String

Installation Field Record

Project 1 11 - Rouseveld Fre 2	Well No: SUP_5	By: <u></u>
Client: CDM	Location: Resear FR 12	Date: 8/33/10

Installation Data

ó	ġ				905. 73/000 to Max					Po
Port No.	Zone No.	Nom. Depth ()	Collar Depth ()	Cable No.	Cable Length ()	Probe No.	Probe S/N	Prev. Press. Data (Po, psia)	Pi Inside Westbay (psia)	Outside Westbay (psia)
0	_	_				0	3575	-	_	_
1		430					3952	187.58	189.17	187.71
				3-1	72.0					
3		359				2	2200	156.12	158.05	156,46
	·	2		5-3	65.0					
5		293				3	2585	128,27	12296	128.56
				8-5	140.0					
8		153				4	3017	68.85	69.34	68,90
2				10-8	105-0					
10		48				5	2606	23.74	23.89	23.55
			, , , , , , , , , , , , , , , , , , ,	0-10	CP-0					
								7,500		
			1							

Datalogging Settings

Schedule	MAGI Settings
Scan Rate:	Power Save:
Collect Rate:	Beeper:
Start Time:	External Power:

Casing Installation Log Aquifer Drilling & Testing, Inc.

Job No: WB845 Well: SVP--05

Fabrication of MOSDAX 2518 Probe Cables Assembly Record and Acceptance Tests

	Final	Accept																
NB845	Final	- 1																
Project No.: WB845		A to B			+		1									_		7
Proje	Fests				-		1	-	+	_	-	_						\dashv
S ft	Continuity Tests	B = Armor																
Depth: 446 ft	0	A = Center																
	У	Connector																
es: 5	Bottom Assembly	Adhesive																
No. of Probes: 5	Bo	# Strands																
		Connector							-									
o.: SVP-5	Top Assembly	Adhesive																
Borehole No.:	I	# Strands																
	Cable	Type																
	Nominal Length	(t)	68.00		105.00		140.00		65.00		72.00		(430.00)		ř			
	Cable ID	Ö	0-10		10-8		8-5		5-3		3-1							
CDM				48		153		293		358		430						
Client: CDM	Port	Š.		10		∞		2		က		-						

Signed:

Date:

MOSDAX Cable Fabrication SVP-5; 8/19/2010 14:50

MOSDAX Probe String

Installation Field Record

Project: ()M - Roosevel Field	Well No: _	SUP-10	By: _	OS
Client: CDM	Location: _	Receivell	Field Date:	8/23/10

Installation Data

Port No.	Zone No.	Nom. Depth	Collar Depth ()	Cable No.	Cable Length	Probe No.	Probe S/N	Prev. Press. Data (Po, psia)	Pi Inside Westbay (psia)	Po Outside Westbay (psia)
0							3414	1		14.62
1		482				1	3951	208.46	211.27	209.04
				3-1	130'					(,)
3		352				N	2532	152.08	154.89	152.70
				5-3	a5"					
5		287				3	2437	124.02	126-72	124.68
				8-5	140'					
8		147				4	1783	64.96	66.12	65.05
				10-9	1001				22.76	
10		47'				5	2593	21.83	65.0	21.65
				0-10	67'					

Datalogging Settings

Schedule	MAGI Settings
Scan Rate:	Power Save:
Collect Rate:	Beeper:
Start Time:	External Power:

Fabrication of MOSDAX 2518 Probe Cables Assembly Record and Acceptance Tests

		±								Г									
	Final																		
. WB845	Final	ength (ft)																	
Project No.: WB845		A to B																	
	Continuity Tests	B = Armor																	
Depth: 497 ft	Cont	A = Center B																	
Dep		-								_									
	bly	Connector														1100-11			
es: 5	Bottom Assembly	Adhesive																	
No. of Probes: 5	Bo	# Strands																	
		Connector																	
:: SVP-10	p Assembly	Adhesive													-				
Borehole No.:	Top	# Strands																	
	Cable	-												ű.		1			
-	Nominal Length	(L)	67.00		100.00		140.00		65.00		130.00		(482.00)		-		•		
	۵	O	0-10		10-8		8-5		2-3		3-1								
CDM	Nom. Port	Depth (ft)		47		147		287		352		482							
Client: CDM	Port			10		œ		2		က		1							

:51	
19/2010 14	
,8	
n SVP-10	
Fabrication	
Cable	
MOSDAX	

Summary Casing Log CDM

Job No: WB845 Well: SVP--10

Page: 3

Summary Casing Log CDM

Job No: WB845 Well: SVP--10

Page: 4

Summary Casing Log CDM

Job No: WB845 Well: SVP--10

Scale Feet	MP Casing	Scale Feet	MP Casing
400	2 13 402 ft 13 407 ft	500	
420	11	520	
430	10	530	
440	8	540	
450	7	550	
470	6 5	570	
480	4 3 482 ft	580	
490	487 ft	590	
500 (c) Westbay	Instruments Inc. 2000 h	600 u Oct 09 15:20:54 2008	

Table 3b, Depths of Key Items for Westbay monitoring well: SVP-10.

Zone No.	Screen Interval* (From video log)	Packer No.	Packer Serial No.	Nominal Packer Position ***	Magnetic Collar Depth	Measurement Port Depth**	Pumping Port Depth**	Port Name
Zone 1	480-485	ı	16336	472	484	482	487	Zone 1
QA I		2	16337	462		467		QA 1
QA 2		3	16235	407		412		QA 2
Zone 2	400-405	4	16224	392	404	402	407	Zone 2
QA 3		5	16233	357		362		QA 3
Zone 3	350-355	6	16232	342	354	352	357	Zone 3
QA 4		7	16231	332		337		QA 4
QA 5		8	16250	312		317		QA 5
Zone 4	305-310	9	16248	297	309	307	312	Zone 4
QA 6		10	16249	292		297		QA 6
Zone 5	285-290	- 11	16247	277	389	287	292	Zone 5
QA 7		12	16246	267		272		QA 7
QA 8		13	16255	252		257		QA 8
Zone 6	245-250	14	16254	237	249	247	252	Zone 6
QA 9		15	16253	227		232		QA 9
QA 10		16	16252	192		197		QA 10
Zone 7	185-190	17	16251	177	189	187	192	Zone 7
QA 11		18	16236	167		172		QA 11
QA 12		19	16237	152		157		QA 12
Zone 8	145-150	20	16238	137	149	147	152	Zone 8
QA 13		21	16245	127		132		QA 13
QA 14		22	16239	107		112		QA 14
Zone 9	100-15	23	16240	92	104	102	107	Zone 9
QA 15		24	16244	82		87		QA 15
QA 16		25	16243	52		57		QA 16
Zone 10	45-50	26	16242	37	49	47	52	Zone 10
QA 17		27	16241	27		32		QA 17

^{*} Depths are with respect to ground level.

^{**} Component positions are referenced to the top of the subject Westbay System coupling.

^{***} Packer positions are referenced to the top Westbay System coupling on the packer.

Appendix B Pump and Flow Meter Information

THE RANGER™

The Ranger™ Series 4"
high-flow submersible pumps
are perfect for applications
requiring a large volume of
water. Stainless steel components and high-density
composite resin impellers
provide exceptional resistance
to corrosion in harsh water
conditions. The high-torque
motor and superior pump
hydraulics are carefully
matched to handle virtually
any job.

APPLICATIONS

Water systems... irrigation, industrial, commercial, multiple housing and farm clean water use

SPECIFICATIONS

- Shell 304 Stainless Steel
- Discharge 304 Stainless Steel
- Discharge Bearing Buna-N
- Impellers Noryl®
- Diffusers Noryl
- Suction Caps Noryl
- Shaft and Coupling 304 Stainless Steel
- Intake 304 Stainless Steel
- Intake Screen 304 Stainless Steel
- Cable Guard 304 Stainless Steel
- Check Valve Polyester Teflon®
- Fasteners 304 Stainless Steel

FEATURES

Turn Up the Volume

High-flow capacities to 100 GPM make the Ranger 4" sub the easy choice for the really big jobs

More Stainless Steel

Shell, discharge and suction bowl, shaft and coupling, lead guard and suction screen – all lead-free

Staged for Toughness

Specially designed, high-density thermoplastic impellers resist the corrosive wear from harsh water conditions

High-powered Performance

Features a high-torque, heavy-duty motor for the most demanding applications

Noryl® is a registered trademark of the General Electric Company. Nylatron® is a registered trademark of The Polymer Corporation. Teflon® is a registered trademark of Dupont. Ranger™ is a trademark of Pentair Water.

ORDERING INFORMATION - PUMP

			A	ssembled Pump)
GPM	НР	Stages	Catalog Number	Length Inches*	Weight Pounds
2.	1	7	SS10-25	18	12
	1-1/2	9	SS15-25	21	14
25	2	11	SS20-25	24	15
20	3	15	SS30-25	30	19
. [5	25	SS50-25	48	27
	7-1/2	37	SS75-25	67	55
	1	4	SS10-35	15	10
	1-1/2	6	SS15-35	18	12
[2	8	SS20-35	22	14
35	3	11	SS30-35	28	17
	5	18	SS50-35	43	24
	7-1/2	28	SS75-35	62	52
	10	37	SS100-35	75	63
	1-1/2	6	SS15-50	21	14
	2	7	SS20-50	23	15
50	3	10	SS30-50	31	19
อบ	5	16	SS50-50	48	27
	7-1/2	25	SS75-50	70	59
1.47	10	32	SS100-50	84	68
	2	6	SS20-80	29	16
	3	9	SS30-80	39	20
80	5	14	SS50-80	59	45
	7-1/2	22	SS75-80	66	59
	10	27	SS100-80	100	69

MOTOR / CONTROL BOX

				PENT	EK® Moto	r	PENTEK Control Box
НР	No. of Wires	Volts	PH	Catalog Number	Length Inches*	Weight Pounds*	Catalog Number
4	2	230	1	P42B0010A2	12	22	
J.	3	230	1	P43B0010A2	12	22	SMC-CR1021
	2	230	1	P42B0015A2	15	30	
1-1/2	•	230	1	P43B0015A2	14	27	SMC-CR1521
	3	230	3	P43B0015A3	13	23	SMC-CR1521
2	3	230	1	P43B0020A2	15	29	SMC-CR202
2	0	230	3	P43B0020A3	14	27	SMC-CR202
3	3	230	1	P43B0030A2	24	49	SMC-CR302
3	•	230	3	P43B0030A3	21	40	SMC-CR302
5	3	230	1	P43B0050A2	30	66	SMC-CR502
Ü	•	230	3	P43B0050A3	24	50	SMC-CR502
7-1/2	3	230	3	P43B0075A3	30	66	SMC-CR752

 $^{^*}$ Length and weight are approximate.

OUTLINE DIMENSIONS

THE RANGER™ 4" SUBMERSIBLE PUMPS

PUMP PERFORMANCE - 25 GPM

PUMP PERFORMANCE - 35 GPM

PUMP PERFORMANCE - 50 GPM

PUMP PERFORMANCE - 80 GPM

THE RANGER™ 4" SUBMERSIBLE PUMPS

		341711	190	MIN	1	111/2		_					Derm	ine P	epth in	Foct.	- 979	11111	1771		TV	AND T				_
HP	Catalog Number	Tank Pressure	0	20	40	60	80	100	120	140	160	180	200		300		400	450	500	550	600	650	700	750	800	850
25 G	ALLONS I	PER MINU		10	40	00		100	120	140	100	100	100	100	000	000	100	100	000	000			100	100		
1	SS10-25	20/40 30/50	35 30	31 28	27 22	22 17	18 12	11	201										11	8				, v		
1-1/2	SS15-25	20/40 30/50	36	33	33 30	30 27	27 23	23 20	20 15	15			**	2-1-								4				
2	SS20-25	20/40 30/50			38	36	36 33	33 31	31 27	28 24	25 20	21 16	17	11			1			1						1
3	SS30-25	20/40 30/50							36	34	32	33 30	30 28	25 22	18 15								7			
5	SS50-25	20/40 30/50								eš.			38	37 36	34 33	31 30	28 27	25 24	22 21	18 16	13		2			
7-1/2	SS75-25	20/40 30/50		17.3-												39	37	36	34 34	32 32	30 29	28 27	26 24	23 22	19 18	1
35 G	ALLONS																									
1	SS10-35	20/40 30/50	37 25	25		7	1.0			-*				Ĭ.				A		-				-		
1-1/2	SS15-35	20/40 30/50	49 42	43 34	35 26	28 15		7>						Ì				-							-	
2	SS20-35	20/40 30/50		50	50 46	46 40	41 33	35 26	27 16																	
3	SS30-35	20/40 30/50	12.1		1 1/2	49	49 45	46 42	42 37	38 33	33 26	27 21	15	00	00	- 00				S.	3					
5	SS50-35	20/40 30/50								49	49 47	47 45	45 43	39 36	32 28	23 18		-								
7-1/2	SS75-35	20/40 30/50	. 35		100	W V	10.3			254		4	21.0	M	50 49	47 46	44 43	40 38	36 34	32 30	27 24	16	05	00	00	
10	SS100-35	20/40 30/50	1149.4					12.00								51 49	49 48	48 47	46 45	43 42	40 39	38 37	35 34	32 30	29 27	2
50 G	ALLONS	PER MINU	TE																							
1-1/2	SS15-50	20/40 30/50	65 55	56 45	46 34	37 20	220	7										3						-		
2	SS20-50	20/40 30/50	70 64	63 55	56 47	47 40	40 29	30																		
3	SS30-50	20/40 30/50	70	70 64	64 60	60 55	55 49	50 44	44 35	36 29					-											_
5	SS50-50	20/40 30/50				72 70	70 66	67 64	64 60	61 57	57 54	54 50	51 46	41 36	30 23			122								
7-1/2	SS75-50	20/40 30/50		8							70 67	67 65	65 63	60 58	55 53	49 46	43 40	35 32								
10	SS100-50	20/40 30/50	1 2						, a	1				68 67	65 63	61 59	58 56	53 51	48 46	44 42	39 37	33 30		-11		
80 (ALLONS	2/0/2/00/2					No.		TO N		212															
2	SS20-80	20/40 30/50	75 58	56 40	40	A12118 T										#2 V				£ 7	14.00			1		
3	SS30-80	20/40 30/50	93 81	81 71	72 60	60 48	50 37									0										
5	SS50-80	20/40 30/50	100	101 94	94 88	87 80	80 72	72 62	63 58	57 50	49 40	40	-					- Sur								
7-1/2	SS75-80	20/40 30/50		i.	104	104 100	100 96	96 90	91 87	87 82	82 78	77 72	72 67	60 52	45 39	20			(X)				-			
10	SS100-80	20/40 30/50		ii ii				104 101	97 95	95 93	93 90	89 86	84 81	72 70	68 65	58 55	100	P =			>					

16273

Serial Number	NA	Reading		12	8	
Flow Rate	Low 7.0	Inter (20.0	Full 275.0			
Test Registration	1	V				
Factor			—	LAWCO		
Final % Registration	990	99.0	99-0			
Reg. Gear Gleone	SB G	ear the N.C	Size 3"	Cu Ga	ı. Ft. al.	
Style Se CA	Metri	cs Test	er Kib	Date 2	2010	

Flov Rat Te Rr

Serial Number	14	NA		3341	1.5
Flow Rate	Low 4 .0	Inter 0	Full D. 0		
Test Registration		V	V		
l actor			-	LAV	vco
คือใ % Registration	97.D	/0/. D	99.8		
Reg. Gear Electro	SB G	eetninic	Size 2"	Cu Ga	i. Ft. 🚨
StyleSca	A-/1 I	Test	erLUb	Date 2	roid

hozo1

Serial Number	NA		Reading	10.	4
Flow Rate	LOW O	Inter 60.0	Full //D . 0	,	<u></u>
Test Registration	1	V	4		
Factor	V			LAW	co
Final % Registration	1040	1040	1040		
Beg. Gdar Electrin	Vic Ele	eafair!C	Size 2"	Cu. Gal	
		Ri U Test	er KIB	Date 2	2010

Appendix C Step Test Water Level and Flow Rate Data

Step TESTING

DATE: 8/3/10 NAME: F. Robinon / S. Dohnstry

WELL: EW-25 STEP 1 Flow Rate: 806 PM

lassed			•		0 2001
TIME	E.T.	DTW	D. DOWN	FLOW RATE	TOTALIZER
	STATIC	33.93			3659
0800:30	0,5	35.22			
0801	1	35.92			4
0802	2	35.80		3 9.8	39.8 J
0803	3	35.91		40	39.8 F. 40 F 32 8 F
0804	4	35.8/		39.8	3883
0865	5	35.92			
0806	6	35.99		%. <u>2</u>	
0807	7	35.88		40.3	
8080	8	35.98		40.3	
0809	9	35.97		40.5	
0810	10	36.03		Yo. 3	
0811	11	36-03		80.0	
0812	12	36.03		40.0	
0813	/3	36.03		39.8	
0814	14	36.02		39.7	
081	15	36.00		39.6	
6820 2	**********	36.03		39.7	44 68.5
085- 5	25	36.02		39.9	-
0830		36.03		39.4	483 46.5
08353	-	36.03		39.7	
0840	40	36.02		39.7	

Dage 1.12

Sty TESTING

 DATE: 8/3./10
 NAME: FR/50

 Step 2: Flow Rete 40 6 Pm

 TIME DTW
 D. DOWN
 FLOW RATE
 TOTALIZER

 0847 45 36.06
 39.9
 5434.9

 0850 50 36.07
 39.8

39.8

39.6

6023.2

0910 70 39.6 36.09 39.8 6807.5 6 720 80 34.13 9730 90 36.13 40.0 7549.3 36.13 0948 100 39.7 0950 /10 36.15 39.8

0200 60

1000 /20

3608

36.18

page 212

Step **TESTING**

DATE: 8/31/10

NAME: FR/JD

Stop 2 Flux Rest = 60 WELL: Eu-15

TIME ET	DTW	D. DOWN	FLOW RATE	TOTALIZER
1000:30 0.5	37.08		60.0	
1001 1	37.20		60.0	8456.6
1002 2	37.15		60.0	
1003 3	37.17		60.0	
1004 4	37.17		60.0	
1005 5	37.22		60.0	
1006 6	37.22		60.0	
10077	37.23		60-0	
1008 8	37.26		60.0	
1009 9	37.22		60.0	
10/0 10	37.24		60.0	
1011 11	37.20		60,0	
1012 12	37.23	,	60.0	
1013 13	37.26		60.0	
1014 14	37.22		60.0	
1015 15	37.23		60.0	
1020 20	37.22		60.0	
1025 25	37.13		60.0	
103030	37.05		60.0	10164.4
1037 35	36 96		60.0	
1040 40	36.91		60.0	
	~ 4			

10112

Step TESTING

-1-/-	TESTING	
N/		
-	Step 2 Flw 10	Ch = 60
D. DOWN	FLOW RATE	TOTALIZER
	60.0	
	60.0	
(1	60.0	
3661	60.0	
36.61	60.0	
	60.0	
	60,0	
	60.0	
	60.0	
· · · · · · · · · · · · · · · · · · ·		
	-	NAME: FR+ JD Step 2 Flw 18 D. DOWN FLOW RATE 60.0 60.0 60.0 60.0 60.0 60.0 60.0

Step TESTING

DATE: 8/31/10

NAME: FR+ JD

Stap 3 Flow Rete - 75 GPM WELL: FW-15

TIME ET DTW	D. DOWN	FLOW RATE	TOTALIZER
200:30 0.5 37.04		75	
1201 1 37.21		75	
1202 2 37.20		75	
1202 3 37.20		75	
1204 4 37.23		75	
nor 3 37-20		75	16092.7
1206 6 37.21		77	
1207 7 37.21		75	
1208 8 37-22		75	
1209 9 37.25		75	
12 10 10 37.23		75	
1211 11 37.23		75	
121212 37.25	,	75	
12/3/3 37.22	-	75	
1214 14 37-22	_	75	
1215 15 37.23		71	
122020 37.22		75	
1225 25 37.18		75	
1230 30 37.22		75	17912.4
1235 35 37.21		75	
1240 40 37,23		76	

Step TESTING

DATE: 8/31/10	N/	ME: FR+ JD					
WELL: Ew-15		Flow Rak = 75 GPm					
TIME ET DTW	D. DOWN	FLOW RATE	TOTALIZER				
1245 45 37.22		76.0					
1250 50 37.22		76.0					
1255 55 37.18 1300 1300 60 37.20		7500					
1300 1200 CO 37.20		75.0	20/65/				
13/0 70 37.18		75.0					
1320 80 37.19		75.0					
1330 90 37.18		75.0	22510.3				
1340 100 37.21		75.0					
1350 110 37-18		75.0					
1400 120 37.18		71.0	·				
			,				

Step TESTING

DATE: 8/31/10

NAME: FR+ JD 5tep 4: 906 pm WELL: ES-15

TIME ET DTW	D. DOWN	FLOW RATE	TOTALIZER
1400:300.5 37.75		90 6 Pm	24713.6
1401 1 37.78		90 6 Pm	
1402 2 37.82		90 bpm	
1403 3 37.84		90.06Pm	
1404 4 37.85		90 cm	
1405 5 37.85		90 694	
1406 6 37.84		90 6m	
14077 37.86		90 Gpm	
1408 8 37.86		90 GA	
1409 9 37.85		90 6m	
1410 10 37.86		90 6pm	
14/1 11 37.87		90 GM	
1412 12 37.87		90 6pm	
1413 13 37.87		90 6Pm	
1414 14 37.84		90 6 Pm	
1415 15 37.82		90 6P	۲-۱
1420 20 37.87		90 601	`
142525 37.85		90 61	~
1470 30 34.86		90 G Pr	7
1435 35 37.86		90 GP	n
1440 40 37,86	Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which the Owner, where the Owner, where the Owner, while the Owner, while the Owner, where the Owner, where the Owner, where the Owner, where the Owner, while the Owner,	906	PM
1445 45 37, 8	652	90	-itl

ORF WATER LEVEL DATA

Step TESTING

	314	1ESTING		
DATE: 8/3///0	NAI	ME: FR+J	0	
WELL: EW-25		Step 4: 8	DO GPM	
TIME ET DTW	D. DOWN	FLOW RATE	тот	ALIZER
144 48 37.86		90		
1450 50 37.86		G P		
4rr 55 37.80		70 P	Pm	
1500 60 37.84		90	30	052.2
1510 20 37.87		90		
1520 80 37.87		90		
153. 90 37,86		90 G	Pm 3	2476.3
1540 100 37.86		90		
1550 110 37.86		90		
1600 120 37.85	-	90 6P	in .	
الله الله الله الله الله الله الله الله	atter Quelity			
time Toc Cond	DO 01-	1 ORP	NTU	
1545 17.31 0.644	3.07 4.51	8 184.7	1.2	
1550 17.31 0.642	3.67 4.5	7 188.3	1.1	
1555 17.30 0.64	2 2.16 4.5		1.2	
1600 17.33 0.641	2-18 4.6	51 189.2	1-1	
			2	
Final How me	to read	ing 36:	385.7	EW-15
InHal flow "	ν		559.1	EW-15
	Tota	1 32,7	-26.6	
Frual Flow Mt.	ter readin	6 1772	6859	Cembines
				Com 31NED
Initial flow Men	ms/ch	03	4496	Colvidio
-//				

Step TESTING

	water to the same of the same	Management of the Control of the Con	
DATE: 8/31/10	NA	ME: FR/ JO	
WELL: Ew-159	Le Ce	comy Pur	H C 16/0
TIME ET DTW	D. DOWN	FLOW RATE	TOTALIZER
1610:30 0,5 34.08			
1611 1 33.83	2		
1612 2 33.6			
1613 3 33.6	2 10		
1614 4 33.5	233.59		
1615 5 33.5	5		
1616 6 33,			
1617 7 33.5			
1618 8 33-5	Γ		
1619 9 33.3			
1620 10 33.5			
162111 33.5			
162212 33.5	5.3		
1623 13 33.5	7_		
1624 14 33.60	5		
1125 15 33.6	2		
1636 20 33.6			
135 25 33.70			
16.40 30 33.8			
1645 35 33.1			
1650 40 33.8			

Step **TESTING**

DATE: 9/1/10 NAME: AR+JO Step 1:40 61m

WELL: EW-1D

WELL: EW-ID	Static = 3	5.00	teklize Mit= 535.	Y Galley
TIME ET DTW	D. DOWN FL	OW RATE	TOTALIZER	
080136 0.5 36.30		40.7		
0801 1 36.80				
6,02 2 36.05		40.3		
0803 3 36,08		40.2		
080y 4 36.07		40.4		
0805 5 36.10		40.5		
0806 6 36-11		40.6		
08077 36.09		40.5		
0808 8 36.12		90.1		
0809 9 36.09		40.4		
0810 10 36.12		40.5		
0811 11 36.14				
12 MISSEA	reading, NOTES	BYDOUG	51-Kelly	
0813 13 36.17		40.4	/	
0814 14 36.15		40.4		
0215 15 36.17		40.3		
CEZO 20 36.17		40.7	Kelingueoh to	an.
0825 25 36.16		40.2	Frank ROBINSON	1
0830 30 36.17		40.6		
0835 35 36.17		40.5		
0840 40 36.19		40.3		
0845 45 36.20		40.2		

Step TESTING

DATE: 911/10

NAME: FR+ JD Step 1= 406PM WELL: FW-17

TIME	ET	DTW	D. DOWN	FLOW RATE	TOTALIZER
0850	50	36.20		40.5	
0851	55	36.20		40.7	
0 900 (0	36.19		40.3	
0910	70	36.2x		40.4	
0920	80	36.25		40.3	
0920	90	36.27		40.3	
0940 /	60	36.31		40.3	45 87.2
0950	110	36,30		40.3	
1000 1	20	36.33		40.3	
-					
Market Company					
MARKET TO SERVICE AND ADDRESS OF THE PARTY O					
: 100m intercepted dataset qualitative					
•					
					1

Step TESTING

DATE: 8/1/10 NAME: FR+JD

WELL: EW-1I Step 2= 60 6 Pm

TIME	ET D	TW	D. DOWN	FLOW RATE	TOTALIZER
1000:30	0.5	3655			
1005	1	36.80		616th	
1002	2	36.83		626Pm	
1003	3	36.83		60 6Pm	
1004	4	36.82	**************************************	60 bpm	
1005	5	36.82		60 GPn	
1006	6	36.82		60 6Pm	
1007	7	36.81		60 614	
1008	8	36.81		60 6Pm	
1008	9	36.82		60 GP4	-
1010	10	36.83		60 GP1	1
1011	11	36.82		60 600	1
1012	12	36.82		60 0 pm	
1013	/3	36-83		60 600	7
1014	14	36-81		60 60	ำ
1015	15	36.81		60 69	M
1020	200	z 36.83		60 6P2	2
1025	25 14 30 1	n 36.82		60 6	(n
1630	30 1	2 36-8	l	60 6	(m
1035	35	2 36.8	Y	60 G	Ph
1040	40	36.8		60 (Spn
1845	48	36.8	3	60 (Spr

Step TESTING

	0100	TESTING	
DATE: 9/1/10	N/A	ME: FR+ JD	
WELL: EW-II		Step 2 = 6069	27
TIME ET DTW	D. DOWN	FLOW RATE	TOTALIZER
1050 50 36.81		606 pg	
1055 Sr 36.82		60 6Pm	
1100 60 36.83		60 GPh	
1110 70 36.86		60 GPM	
1120 80 36-87		60 GPn	
1120 90 36.87		60 Gpm	
1140 100 36.86		60 Gpn	
1150 110 36.84		60 cpm	
1200 120 36.88		60 6 Pm	

TESTING

NAME: FR+ JD

DATE: 9/1/10
WELL: EW-II Step 3 = 75 6Pm

TIME ET D	TW D. DC	WN FLOW	/ RATE	TOTALIZER
1200:30 0.5	37.20			
1201 1	37.25	75	T6pm	
1202 2	37.27	7:	5 6 pm	
	37.27	71	- GPM	-
1204 4	37.28	71	5 GPM	
1205 5	37.28	71	r Gln	
12066		7.	5 GPm	
1207 7	37.28	7.	5 GPM	
1208 8	37.29	7	5 (Pm	
1209 9	37.30	75	5 6Pm	
1210 10	37.31	7	T GPm	
1211 11	37.30		T GPM	
1212 12	37.31	7	45 6Pm	
1213 13	37.31	7	T GPM	
1214 14	37.28	7	T GPm	
1215 15	37.28	7	er org	
1220 20	37.31	7	5 GPm	
1275 25	37-31	7	J 6Pm	
1230 30	37.30	7	4 6Ph	
1235 35	37-30	7	27 6 Pm	
1240 46	37-31	7	75 6PM	\
1247 45	37.31	7	T 6 Pm	

Step **TESTING**

DATE: 9/1/16 NAME: FR+ J1 Step 3= 75 6Pm

WELL: EW-1 I

TID 45		DT14/	D DOMAN	FLOVALDATE	TOTALIZED
		DTW	D. DOWN	FLOW RATE	TOTALIZER
50	50	37.32		756Pm	
		37.32		75 6Pm	29/
300	60	37.33		756Pm	17039.6
210	Fo	37.32		75 6Pm	
320	80	37.33		75 6Pm	
330	Su	37.32		75-6Pm	
1340	100	37-32		756P4	
1350	110	37.34		7- 6Pm	
1350	120			7T 6Ph	

Step **TESTING**

DATE: 9/1/10

NAME: PRA JD Step 4= 806Pm WELL: EW-II

TIME	ET D	TW D.	DOWN	FLOW RATE	TOTALIZER
1400:30	0.5	37.73			
1401		37.73		906Pm	
R. C. Company of the	2	37.7x		90 6Ph	
1403	3	37.74		90 6,pm	
1404	4	37.75		90 GPn	
1405	5	37.75		90 GPM	
1406	6	37.74		20 6pn	\
1407	7	37.76		90 6Pm	
1408	8	37.76		90 6Pm	1
1409	9	37.76		90 6Pm	\
1410	/4	37.76		80 6 pm	
1411	11	37.74		90 6Pn	1
1412	12	37.75		90 6Pa	
1413	13	37.76		90 GPM	1
1414	ly	37.75		90 690	^
1415	15	37.75		90 61	s m
1420	20	37.75		70 6 PM	~
1425	25	37.76		90 GP	7
1430	_	37.76		90 G	PM
1435	35	37.76		90 6	Pm
1440	40	37.75		90 (SP
1445	45	_			

Ster **TESTING**

DATE: 9/1/10

NAME: FR+ JD S+p & 90 GPM WELL: Elu-II

TIME !	DTW	D. DOWN	FLOW RATE	TOTALIZER
1450 3	50 37.76		906Pm	
1455	51 37.76		90 6Pm	
1500	60 37.75		90 61%	
150	70 37.76		90 GPM	
1520	80 37,75		TO GAM	
1530	90 34,75		90GPM	
1540	100 37.74		90 6Pm	
	110 37.75		906 Pm	
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	120 37.75		90 6Pm	
			End = 3289	3.7
of.	C @ 1608			

	Water Quelity							
Time	T°C	Cond	00	OH	ORP	NTU		
1545	15.98	0.394	5.42	4.58	238.7	1.24		
1550	15.95	0.394	4.33	4.53	250.3	0.51		
1555	15.95	0.393	4.23	4.55	252.5	0.53		
1800	15.98	0.392	4.09	4.56	254.6	0.,71		

00= mgll Cond = ms/cm

8 of 9

Sup TESTING

DATE:	91	1/10		NAME: FR+ JD	3
WELL:	EL	U-1I		Recommended of Cox	1608
TIME	ET	DTW	D. DOWN	FLOW RATE	TOTALIZER
1608:30	0.5	35.72			
1609	1	35,65			
1610	2	35.60			
1611	3	35.58			
1612	4	35.58			
1613	5	35.55			
1614	(35.56			
16 15	7	35.56			
1616	8	35.56			
1617	9	35.55			
1618	10	35.54			
1618	(1	35.5%			
1620	12	35.54			
1621	13	35.54			
1622	14	35.53			
1623	1	35.53			
1628	20	35.54			
1633	25	35.51			
1138	30	35.51			
1643	35	35.50			
	40				
	41				

Step TESTING

NAME KOLTO	
NAME: FRAJA	
Step 1: 60 6pm Static = 35.70 to talizar= "	978502.2
DOWN FLOW RATE	TOTALIZER
60 6Pm	
6161m	
61 6 Pm	
61 Gpm	
61 6 Pm	
61 6Pm	
61 6Pm	
61 6Pm	
61 (pm	
61 61684	
61 6Pm	
61 6Pm	
616Pm	
61 6 pm	
6/6 Pm	
61 6Pm	
616Pm	
61 6Pm	
616Pm	
	Step 1: 60 6pm Static = 35.70 fotalizer = 9 60 6Pm 61 6Pm

Step TESTING

NAME: FR+ JD Step 1: 60 6Pm DATE: 9/2/10

WELL: EW-10

TIME ET DTV	D. DOWN	FLOW RATE	TOTALIZER
0650 50 37	81	61 6Pm	
0655 55 37	1.82	616rm	
0700 60 37	1.92	616+4	
0710 70 37	H.83	616Pm	
0720 80 3	7.87	6168-	
6730 90 37	7-89	61 6Pa	984684.
0740 100 3	7.93	61 6 Pm	•
6750110 3	7.94	616pg	
0800 120 37	7.94	616Pm	
-			

Step TESTING

DATE: 9/2/10
WELL: EW-10 NAME: FR+JD Step 2: 100 GPN

TIME ET D	TW D. DOWN	FLOW RATE	TOTALIZER
6800:36 6.5	39.25		
086(1	38.85		
0802 2	39.25	16/6PM	
0863 3	39.34	99 612	
0604 4	39.15	99 6Pm	
080r 5	39.16	100 6Ph	
0808 6	39.21	100 GPN	
0807 7	31.22	100 Gpy	
0868 8	39.22	100 6Pm	
0109 9	39.21	100 6Pm	
08/0 10	39.22	100 6Pm	
044 11	39,23	100 Gra	
0812 12	39.23	100 GP-	
0813 1)	૩ ૧ . ૨૩	100 GPM	
0814 14	39-2y	100 GPM	
0815 15	39.24	100 GPm	
0820 \$ 20	39.25	100 61m	
0821 0830 1 25	39.25	100 6P4	
0830 /8 30	39.26	100 GPM	
6135 25	39-26	100 Gpm	
0840 40	39.28	100 6Pm	
0845 45	39,28	100 6Pm	

SEP TESTING

DATE: 9/2/10 NAME: RAJO Step 2: 100 6 Pm WELL: EW-1D TIME LT DTW D. DOWN FLOW RATE **TOTALIZER** 0850 50 39.28 1006 Pm 0855 39-29 100 GPn 39-31 0700 60 100 Gpm 39.32 100 GPm 0910 70 39.33 0920 80 100 cm 39.35 100 6 Pm 90 0930 0540 100 39.38 100 GP4 39.38 0950 110 100 GP4 1000 120 39.39 100 GPM

Step TESTING

NAME: FR+ JO Step 3: 140 (pm DATE: 912/10
WELL: Ew-10

TIME	ET	DTW	D. DOWN	FLOW RATE	TOTALIZER
1000:30	0.5	40.52			
1001	1	40,58		140 G8m	
1002	2	40.62		140 GPM	
1003	3	40.63		140 68m	
1004	4	40.63		140 6pm	
1005	T	40.64		140 6pm	
1006	6	40.65		140 6pm	
1007	7	40.67		140 GPm	
1008	8	40.68		140 6 Pm	
1009	9	40.68		Mossin	
1010	10	40.68		180 6 Pm	
1011	11	40.69		140 6 Pm	
1012	12	40,70		140 6 Pm	
1013	13	40.71		1406Pm	
1014	14	40.72		140 Gan	
1015	15	40.71		1406 pm	
1020	2٥	40-71		140 6 cm	
1025	25	40.73		140 6 pm	
1030	30	40.71		140 6pm	
1035	35	40.71		140 6 pm	
1040	40	40.72		140 6Pm	
1045	45	40FZ		140 6Pm	

Step TESTING

NAME: ER+JD Step 3: 140 6pm DATE: 9/2/10

WELL: EW-10

TIME ET		D. DOWN	FLOW RATE	TOTALIZER
TO 50	40.73		140 GPM	
T 55	40.75		1886Pm	
100 60	40.7	r	140 Bpm	
116 70		6	NO GPA	
120 8	0 40.7		140 BPM	
130 9		_	140 gpm	
140 10	6 40.8	32	140 GPn	
150 11	0 40.8	2	140 GAL	
200 12	.0 40.	83	140 6 Pm	
		<u> </u>		
······································				

Step TESTING

DATE: 9/2/10

NAME: FR+JD Step 4: 1806 Pm WELL: Ew-10

TIME T DTW D. DOWN	FLOW RATE TOTALIZER
1200:30 0.5 42-00	
1201 1 42.11	180 6Pa
1202 2 42.13	180 6Pm
1203 3 4212	180 6 Pm
1204 4 42.12	180 6Pm
norr 42.12	116 684
12066 42.13	180 GPM
1207 7 42.12	180 684
1208 8 42-12	180 6 Pm
1209 9 42.13	186 68n
1210 10 42.13	180 GPn
121/ 11 42.13	186 6Pm
1212 12 42.11	180 GPm
1213 13 42.14	180 6 pm
1214 14 42.13	180 GPM
1215 15 42.13	150 6pm
1220 20 42.13	180 6pm
1225 25 42-13	180 GPM
1230 30 42.15	180 GPM
123531 42.19	180812
1240 40 42.20	180 6 pm
124545 42.18	(80 6 m

TESTING

			Step	TESTING	
DATE	. 9	12/10		IAME: ER+ JD	
WELI	.: E	W-1D		Strotest 4.	1/806pm 1037912.4
TIME	ET	DTW	D. DOWN	FLOW RATE	TOTALIZER
1250	50	42.19		186 (Pm	
1255	ST	42.19		180 6Pm	
1300	60	1/2.20		18 0 6 Pm	
13 10	78	12.21		180 68m	
1320	80	42.21		180 6Pm	
1330	90	42-2		180 GPM	
1340	100	42.2	2	180 6pm	
1350	110	42.2	-1	1806An	
1400	120	42.2	1	180 6Pm	

Water Quality									
Timo	1°C	Cond.	Do	PH	ORP	270			
134x	14.61	0.322	4.66	4.62	277.8	1.21			
13 50	14.57	6.322	4.13	4.60	283.7	1.23			
1355	14.55	0.322	3.85	4.60	288.4	1,03			
1406	14.58	0.322	3.76	4.60	291.0	1.04			

Drzngll Cond: m5/cm

8 of ?

Sf @ 1412 Step TESTING

DATE: 9/2/10 NAME: FR+JD Recovery

WELL: EW-10

	TW	D. DOWN	FLOW RATE	TOTALIZER
14/2:30 0.5	37.20			
	7.00			
	76.83			
	36-70			
	36.62	······································		
	36.65			
1418 6	36.58			
1419 7	36.60			
1420 8	36.57			
18 21 9	36.55			
142210	36.57			
1422 11	36-57			
1424 12	36.52			
1425 13	36.50			
1426 14	36.48			
1427 15	3(:50			u Skonkalu kan kan sa Sa keratan kan kan kan kan kan kan kan kan kan k
1433 20	36.44			
1438 25	36.42	3		
1443 30	36.41			
1441 35	36.38			
1453 40	36.39	3		
1458 45	36.3	8		

Appendix D Sustained Yield Test Water Level and Flow Rate Data

Pumping	g Test Field Da	ata Sheet			l.eo		Well No.	
Site	Old Roose	velt Field			July stat= 36869			
Measure						Start 1	030	
	e to Pumping V				Pha	ase of Test:	Drawdo	wn R
Elevation					99 \$1,02877			
	s:						Page:	/
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gp/n)	D .	Remarks
9/7/10	0931	Static	34.67	120		782		
+1		0.5				, ,		
		1						
	1032	2	37.90			70	F.	
		. 3		- 3	18	/		
		4						
	1035	5	38.18			70		
		6						
		7				*		
		8						
		9						
	1040	10	38.28			70		
		11						
		12						
		13						
	11/2	14						
	1045	15	38.33			70		
	1550	20	38.39			70		
I i	1555	25	38.40			70		
	1100	30	38,45			70		
	1105	35	38 46			10		
	1110	40	38,51			70		
	1115	45	38.50			70	i	
	1120	50	38.51			70		
	1/30	60	38.53			70		
	1140	70	38.54			み		
	1150	80	38.54			70		
l.	12 150	000	38.56	1	I	77		

							3		
	Pumping To	est Field Da	ta Sheet		78		Well No.	EW-15	
	Site	Old Roosev	elt Field						
()	Measured l	Ву:							
	Distance to	Pumping V	Vell:	70		Pha	se of Test:	Drawdov	vn Recovery
	Elevation M	ИP:			18				ີ .
	Remarks:							Page:	<u>d_of</u>
	Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)		Remarks
	917/10	1210	100	38.52	2		70		
	/ ()	1220	110	38.53			70		
ZHQS:		1230	120	38.53			70		
ZHOS.		1300	150	38.55			70		
3HRS.		/330	180	38.55			70		
3HBS. YHRS		1400	210	38.54			70		
4+125		1430	240	38.52	100		70		
		1506	270	38.51			70		
5/14		1530	300	3851			70		
		1600	330	38.49			70		
640S.		1630	360	38.49			70		
		1700	390	38.49			70	-	
7 HRS.		1730	420	38.49		· .	70		
		1800	450	38.22			70	-	
8 400.		1830	480	37.90			70	-	
		1900	510	37.74			70		
9 4/28.		1930	540	37.61			70		
		2000	570	37.58			70		
10 HOS.		2030	600	37.55			10		
11 HPS	2.1	2130	660	37.50			10	-	
11 HPS 12H2S.	**	2230	720	37.4	5		70	-	
		7230	780	37.6			70		
	9/8/10	()3°	840	37.80			70		
		130	900	37.5			70		
		230	960	37,34			70	-	
		330	1020	37.25	3		70		
18 ARS	?	430	1080	0.00	5		10		
		530	1140	38 18			70		

** **	Pumping Te	est Field Dat	ta Sheet					Well No.	EW-15
	Site	Old Roosev	elt Field						
	Measured E	Ву:							
	Distance to	Pumping W	/ell:			Pha	se of Test:	Drawdow	n) Recovery
	Elevation M	ИР: _			•				
	Remarks:				· ·			Page:	3_of
	Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	F	Remarks
26 APP.	9/8/10	630	1200	38,31			70		Q.
0017	,,	0.330		38.35			70		
22 400.		0830	1320	38.51			70		
22 +10. 24 HCS. (1840, 240) 26 +18. (1844 HAR)		0930 10 ³⁰	1380	38.60			70		
24 HRS.		1030	1440	38.62	-		70		
(14 2 40)		1130	1500	38.64			70		
Horns.		1230	1560	38.64			70		
(my 4/40)		1330	1620	38.25			70		
C 3812	0,	H30	1680	38,50			70		
		1530	1740	38.52 38.00			70	-	
		1630	1800				70		
		1730	1860	37.71			70		
		1830	1920	37.61			70	<u> </u>	
		1930	1980	37.50			70		
		2630	2040	37,50	-		70	1	
		2/30	2100	37.87			70		
		2330	2160	37.51			70		
	abilio	D 30	2220	37.42			700		
	11110	130	2340	37.41			20		
	'	5230	2400	37,30			70		
		0330	2460	37,53			70		
		430	2520	36.02			70	Si Si	
		530	2580	38.10			70		,
		630	2640	39.26		100	70		
		0730	2700	38.49			7		
		0230	2760	38.59			70	pm	
		0930	2820	38.59			70		

					1571 15				
Pumping To	est Field Da	ta Sheet					Well No.	EW-15	
Site	Old Roosev	elt Field							
Measured 8	By:								
Distance to	Pumping W	/ell:		125	Phase of Test: Drawdown Recovery				
Elevation M	ИP:								
Remarks:			£				Page:	<u></u> 4_of	
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	F	Remarks	
9/9/10	1030	2880	38,69			70		. ,	
	11:30	2940	38,79			70			
	121.30	3000	38,73			70			
	13 30	3060	38.72			70		red	
	1430	3120	30.69			70			
	1530	3180	38.64			70			
	1630	3240	38,60			70			
	1730	3300	38.58			70			
12	1830	3360	37.92			70			
	1930	3420	37,67			70			
	2030	3480	37,55			70			
	21,30	3540	37.47			70			
	2230	3600	37.40			72			
	2330	3660	37.70			70			
9/10/10	030	3720	38.10			70			
	130	3780	37.57			70			
/	230	3840	37,36			70	N.		
	330	3900	37,32			70			
	0430	3960	37,80			70			
	0530	4020	38,10			10			
	0630	4080	38.31			70			
	0720	4140	38.41			70			
	0830	4200	38.52			70			
	0830	4260	38.66			70			
- 1	1030	4320	38 65	1		70			

Pumping	Test Field D	ata Sheet			0		Well No.	EW-1S
Site	Old Roose	evelt Field						
Measured	1 100			, io	- 10.			
	o Pumping \	Well:	8		· Pha	ase of Test:	Drawdowr	Recovery
Elevation		5 Sec. 17.00				6 103		
Remarks:		2			•		Page:	of
					•		3	
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	R	emarks
9/10/10	38.61	Static	38.65		(111)	(gpiii)		
110110	1030:30	0.5	35.62					
	1031	1	35.44					
	1032	2	35.35					
_	1033	3	35.32		C.			
	1034	4	35.26					
	1031	5	35.16			*:		
	1036	6	35.17					
	1037	7	35.17					
	638	8	35.14					
	1035	9	35.12					1
	1040	10	35.12					
	1041	11	35.11		3			
	1042	12	35.09					1
	10043	13	35.06	3			ā .	
	1044	14	35.05					
	1045	15	35.04	- a		2 9		
	1050	20	34.96					
	1055	25	34.92					
8 :	1100	30	34.95					
	1105	35	34.90					
	1110	40	34.90					
	1/15	45	34.88			-		-
	1120	50	34.88					
	1130	60	34-90		-			
	11 40	70	34.90					
	1150	80 3	488					
	1200	90	34.86					

Pumping ⁻	Test Field Da	ata Sheet	iv -	•			Well No.	EW-15
Site	Old Roose	velt Field						440
Measured	Ву:	55.1 31						
Distance t	o Pumping V	Vell:			Pha	ase of Test:	Drawdo	wn Recovery
Elevation	MP:		- 22	ti				2 of
Remarks:							Page:	<u></u>
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)		Remarks
9/10/10	1210	100	34.85				FRO	binsm
	1220	110	34.87					l.
	1230	120	34.78					3
	1300	150	34.56	34.75				
	1330	180	33. 88					
	1400	210	34.35					
1433	1438R	240	34.58					
	1500	270	34.62					
	1530	300	34.68				d	
		330	EN) of 0	BSERI	IDTION	NS -	
		360						
		390		9			/	
		420						
		450						
		480			111			
		510			10 10			
		540		1				
		570			-			
	_	600						
		660						
		720/						
		180						
		840						
		900						
		960						
		1020						
4		1080						
		1140						×

Pumping T	est Field Da	ata Sheet					Well No. 2	EW-15
Site	Old Roose	velt Field						
Measured I		voit i ioid	7.					
Distance to					Pha	ase of Test:	Drawdown	Recovery
Elevation M		_		•				
							Page:	
nemarks.				Я		*	3	
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	Ren	narks
		1200						
		1260						
		1320	•					
		1380			٠			
		1440						
		1500						
		1560						
		1620						
		1680						
		1740						
		1800						
		1860						
		1920						
S4		1980						
		2040						
		2100						
		2160						
		2220						1
		2280						
		2340						
		2400						
		2460						
		2520						
		2580						
		2640				-		1
		2700						
		2760						
		2820						

Pumping T	est Field D	ata Sheet					Well No.	EW-15
Site	Old Roose	evelt Field						
Measured	By:							
Distance to	o Pumping '				Pha	ase of Test:	Drawdown	Flecovery U_of
Elevation N	MP:							11
Remarks:							Page:	<u>9</u> _of
		 	DTW	In t	Ovition	Dumning	Ro	marks
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	Tie	marko
		2880						1
		2940						
		3000						
		3060						
		3120						
		3180						
		3240						
		3300						
		3360						
		3420						
		3480						
		3540						
		3600						
8		3660						
		3720						
		3780						
		3840						
		3900	N.					
		3960						
		4020						
		4080						
		4140						
		4200						
		4260						
		4320						

1.

Pumping	Test Field Da	ata Sheet					Well No. 8	W-1I
Site	Old Roose	velt Field			Tot	low J	fut= 332	2 36.9
Measured						x+ 10		
	to Pumping \	 Well:					Drawdowh	Recovery
Elevation			-					•
Remarks							Page:	
rtomarko				12			. ago:	
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	Re	emarks
9/7/10	0947	Static	35.55		` '			
		0.5						
		1						
	1032	2	37.5r			70		
		. 3			3	(
		4					0	
		5				THY		
	1036	6	37.75			77		
		7	***************************************					
		8						17
		9						
	1040	10	37.71			70		
		11						
		12					41	
		13			1			
		14						
	RD:45	15	32.87		-	70		
	1050	20	37.83			70		
	1055	25	37.80	}	_	70		
	1100	30	37.89			70		
	1105	35	37.91			70		
	1110	40	37.91	0		70		
	1118	45	3793	41		70		ш
	1120	50	37.95	91		20	i i	
	1130	60	37.97			か		
	1140	70	38.00			70		
	1150	80	38,00			70		
	1200	90	38.00			71)		

								(1) 1 =
Pumping T	est Field Da	ata Sheet					Well No.	EW-1 I
Site	Old Roosev	velt Field						
Measured	Ву:							
Distance to	Pumping V	Vell:			Pha	ase of Test:	Drawdow	Recovery
Elevation N	ИP:							
Remarks:			*				Page:	2of
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	F	lemarks
9/7/10	1210	100	38.02			70	-	
	1220	110	38.00			70		
	1230	120	38.00			70		
	1300	150	38.01			70		
	1330	180	38.00			70		
	1400	210	37.99			70		
	1430	240	37,98			70		
	1500	270	37.97			70		
	1530	300	37.87			70		8
	1600	330	37.90			70		
	1630	360	37,81		27	70		
	1700	390	37-91			る	-	
-	1730	420	37.90			70		
	1800	450	37.17			70		
	1830	480	36.65			70		
	1900	510	36.55			70		
	1930	540	36.47			70		
	2000	570	36.48			70		
e	2030	600	36,0			70		
	2136	660	36.30			70		
	2230	720	36.21			70		
	2330	780	36.3			70		
18/10 A.H	2930	840	36.81			70		
9181	130	900	36.2	,		70		
	230	960	36.1			70		
	330	1020	36			76		-0
	430	1080	370	-		70		
	530	1140	3445			70		

Pumping T	est Field Da	ta Sheet		11			Well No.	Ew-1T
Site	Old Roose	elt Field						
Measured I								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pumping V	Vell:			Pha	ase of Test	Drawdow	Recovery
Elevation M			2	•				
							Page:	3_of
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	1	Remarks
9/8/10	630	1200	37.67	-		70		7
	6730	1260	37.80			70		
	0830	1320	37.95			70		
	0936	1380	37.02	,		70		
	1030	1440	38.04			70	24 HR	S
	1/30	1500	38.02			70		
	1230	1560	38.06			70		
	1330	1620	37,61			70		
	1430	1680	37.95			70		
	1530	1740	37.94			70		
	1630	1800	36.95			70		
	1730	1860	36.58			70		
	1830	1920	36,43			70		
	1930	1980	36,38			70		
	2030	2040	36,68			70		
	2130	2100	37,42			70		
	2230	2160	36.67			70		
	2330	2220	36,22			70		
9/9/10	D 30	2280	36.20			10		
17	130	2340	36.10			70		
	0230	2400	36.05			70		
	0330	2460	36,81			70		
	430	2520	37.36		-	70		
	500	2580	37,48		-	70		9
	630	2640	37.71	'		70		*
	0730	2700	37.85			70		
	0230	2760	37.94		1	69	JAD.	/
	0930	2820	38.05			70		

5 4	Pumping 1	Γest Field Da	ta Sheet					Well No.	FW-1:
	Site	Old Roosev	elt Field						
<i>)</i>	Measured	Ву:							
	Distance to	o Pumping W	/ell:		9 9	Pha	ase of Test:	Drawdow	n Recover
	Elevation	MP:							
	Remarks:				*			Page:	<u> 4</u> _of
	Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	F	Remarks
	9/9/10	1030	2880	38,11			70		14
	110	1130	2940	38,15			70		
		1230	3000	38.17			70		
		1330	3060	38.18			70		
		1430	3120	38,17			70		
	*	1530	3180	38.10			70		
		1630	3240	38.05			20		
		1730	3300	37.91			70		
		1930	3360	36.80			70		
		1930	3420	36,46			20		
		2030	3480	36,86			70		
		2130	3540	36.20			70		
		2230	3600	36.14			70		
	,	2330	3660	36,93			70		
	9/10/11	D30	3720	77 36					
	7 /	130	3780	3675			70		
		0230	3840	36.12		,	70		
		0330	3900	35,98			70		
		0430	3960	37.11			70		
		0530	4020	37.42			70	-	
		0630	4080	37.63		-	70		
		0730	4140	37.78			70	-	
		0830	4200	37.91		ļ	70		
		0930	4260	38.11			70	-	
		1030	4320	38.15			70		

				···					EW-1I
Pumping 1	Γest	Field Da	ata Sheet					Well No.	DW II
Site	Old	Roose	velt Field						
Measured	Ву:					•			
Distance to	o Pu	mping V	Vell:			Pha		Drawdown	Recovery
Elevation N	MP:						off 6	1030	
Remarks:	_							Page:	of
	_				ı i	0.0	[n		
Date		Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	ne	marks
9/10/10	-		Static	38.15					
., ,,	10	8:36	0.5	36.37					
	10	31	1	36,30					
	-	32	2	36.20					
		33	. 3	36.16					
	-	34	4	36.11					
	10	35	5	36.07					
	-	36	6	36.04					
	16	37	7	36.02					
	1	38	8	36.02					
	-	039	9	36.01					
	-	040	10	36.00					
	10	41	11	36.00					
	10	42	12	35.85					
		43	13	35.95					
		44	14	35.25					
		45	15	35.93					
	_	٥٥	20	35.90					
	-	55	25	35.80					
	-	00	30	35.82					
		65	35	35.81					
	//	10	40	35.80					
	11	15	. 45	35.79					
	11	20	50	35.77					
	+ -	130	60	35.77	,				
		40	. 70	35.75					
	17	50	80	35.73					
	1	200	90	35.70					

									2
Pumping T	est l	Field Da	ata Sheet		٠			Well No.	EW-1I
Site	Old	Roose	velt Field						æ
Measured I	Ву:								
Distance to) Pur	mping V				Pha	ase of Test:	Drawdown	Recovery Zof_
Elevation N	ЛP:								7
Remarks:								Page:	
		ļ		DTV	In-	O=:#:==	Dumnina	Do	marks
Date		ime	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	ne	nano
9/10/10	10	210	100	35.68					
	12	20	110	35.69					
	12	30	120	35.68					
	13	300	150	35.15					
	13	30	180	34,18					
	14	100	210	35,18					
1433	14	130定	240	35-40				-	
	13	500	270	35.45					
		30	300	35.45					
			330						
			360		,				
			390						
			420						
			450						
			480	,					
			510						
			540						
			570						
			600						
			660						
			720						
			780						
			840						
			900						
	1		960						
	T		1020						
	50-70-		1080						
			1140			<u> </u>			

					and the comment of the comment			
Pumping ⁷	Test Field D	ata Sheet				Well No.	EW-10	
Site	Old Roose	velt Field	denny s diput s - to dissilven			AHIE	r stat=	1037,914
Measured	Ву:				_	Stant	1030	
Distance t	o Pumping \	Well:		#18-8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Pha	ase of Test:	Drawdown	Recovery
Elevation I	MP:							
Remarks:					2		Page:	of
					, n			
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	Re	marks
9/7/10	0941	Static	36.30					
		0.5)*	
		1						
		2						
	1033	. 3	39.90		S# 5	10		
		4						
		5	80					
	10.36	6	39.97			110		
		7	er of					,
-	(I)	8						
	Harris	9	12		24			
	1040	10	40.07			100		
		11						
-	14	12						9
	14	13						
		14				12		
***	1045	15	40.15		П	110		
	1050	20	40.16			110		
	1055	25	4021			110		
	1100	30	40.00			110		
	1105	35	40.26			110		
	1) 10	40	40.26			110		
	1115	45	40,27			110		
	1120	50	40.28			110		
	1130	60	40.27			110	81	
	1140	70	40.27			110		
	1150	80	40.30			110		
	1200	00	40.36			110		

Pumping T	est Field Da	ta Sheet		•			Well No.	EW-10
Site	Old Roosev	elt Field						
Measured								
-	Pumping V	Vell:			Pha	ase of Test:	Drawdown	Recovery
Elevation I	. D	•						
Remarks:							Page:	2_of
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure	Pumping Rate	Rei	marks
1210	1210	100	40.35		(in)	(gpm)		
9/7/10	1220	100	40.32		-	110		
	1230	110	40.32			110		
	1300	120	40.34			110		
	1330	150 180	40.35			110		
	1400	210	40.35			110		10
	1430	240	40.35			110	12	
	1500	270	40.33			110		
	1530	300	40.33			10		
	1600	330	40.28			110		4
	1630	360	40.22			110		
	1700	390	40.29			110		
	1730	420	40.25			110		
	1800	450	39.27			110		
	1830	480	38-80			110		
	1900	510	38.60			110		
	1930	540	38,53			110		
	2000	570	38.46	,		110	12	
	2030	600	38,48			110		
	2/30	660	38,36			110		
	2230	720	38.3			110		
	2330		36.6			110		
9/8/10	030	840	38.87			110		
1	130	900	38.3			110		
	230	960	38.20			110		
	330	1020	38_1			110		
	430	1080	3957			110		
	530	1140	37.85	<u> </u>		110		

Di um min m	Toot Field De	ta Sheet			¥.	,	Well No.	Ew-10
Pumping	Test Field Da	lia Srieel						
Site	Old Roose	elt Field						
Measured	I Ву:					9		
Distance 1	to Pumping V	Vell:			Pha	ase of Test	Drawdown	Recovery
Elevation	MP:							>
Remarks:	-						Page:	<u>3</u> _of
Date	Time	Elapsed	DTW	Drawdown	Orifice	Pumping	Re	emarks
Date		Time (min)	(ft)	(ft)	Pressure (in)	Rate (gpm)		
9/8/10	630	1200	40,30			110		
	0730	1260	4.20			110		
	0830	1320	40.30			110		
	0930	1380	40-32			110		
	1030	1440	40.37			110	24 405	
	1130	1500	40.39			110		
	1230	1560	40.41			110	112	
	1330	1620	39.92			110		
	1430	1680	40.30			110		
	1530	1740	40.30			110		
	1630	1800	3895			110		
	1730	1860	38.65			110		
	1830	1920	38.41			110		
	1931	1980	38,38			110	-	
	2031	2040	38,98			110		
	2131	2100	39,75			110		
*	2230	2160	38.65			110		
	2330	2220	3834			110		
9/9/10	130	2280	39,27			110		
	130	2340	38.16			110		
	0230	2400	38,14		-	110		
	0330	2460	39.15			110		
1.	430	2520	39.63	A STATE OF THE STA		100		
1	531	2580	38,85			110		
	631	2640	40.11			110		
	0730	2700	40.21			110		
	0630	2760	40.35			110	an	
	0130	2820	40.41			110		

							Well No.	EW-10		
Pumping Te	est Field Dat	a Sheet					WEII NO.			
Site	Old Rooseve	elt Field								
Measured E	Ву: _	P.						_		
Distance to	Pumping W	'ell:		8	Pha	se of Test:	Drawdowr	Recovery		
Elevation M	1P:	2)		2				4.		
Remarks:							Page:	age:of		
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	R	emarks		
9/9/10	1030	2880	40.57			110				
	1130	2940	40.60			110				
	1230	3000	7405	3		110				
	1330	3060	40.54			110				
	1430	3120	40.52			110				
	1530	3180	40.44			110				
	1630	3240	40.35			110				
	1780	3300	40.11			110				
	1830	3360	38.90			110				
24	1930	3420	38,56			110				
	2030	3480	38.38			110				
	2130	3540	38.28			110				
	2230	3600	39.22			110				
	2330	3660	30,30			110				
9/10/10	030	3720	39.68			110				
7 /	130	3780	38,33			110				
	0230	3840	39.15			110				
	0330	1	38,11			110				
	0430	A.	39,45			110				
	0530	4020	39,79			110				
	0630	4080	39.95			110				
	0730	4140	40.12			110	-			
	0880	4200	40.27	-		110				
	०१३)	4260	40.48			110				
	1030	4320	40.51			,				

	/°									
	Pumping	Гest	Field Da	ata Sheet					Well No.	EW-
	Site	Old	Roose	velt Field						
	Measured									
	Distance to	o Pu	mping \	Well:		ŭ.	Pha	ase of Test:	Drawdow	n Recov
	Elevation N	ИР:					. 0.	ff@ 10	30	,
	Remarks:						•		Page:	of
	Date		Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	F	Remarks
	9/10/10	-		Static	40.51	- 0	-			
	11.01	10	30:30	0.5	36 37	シネット				
		10	3 /	1	37.08					
		10	32	2	37.02				٠	
			33	. 3	36.98					
		10	34	4	36.95					
		10	35	5	36.90					
		10	36	6	36.88					
		10	37	7	36.88					
)		10	38	8	36.86					
			39	9	36.85					
		10	40	10	36.83					
		-	41	11	36.77					
		/	042	12	36.77					
		-	43	13	36.75					
		_	44	14	36.74					
		_	45	15	76.73					
			50	20	36.68					
		-	55	25	36.65					
		-	100	30	36.65					
		-	05		36.63					
		-	10	40	36.58					
		-	115	45						
		1	20	50	36.61					
		//	30	60	36.60			-		
		1	140	70	36.58 36.58			-	-	
		11	50	80	36.57					

Pumping 1	 Γest I	Field Da	ata Sheet		•			Well No.	EW-10
Site	Old	Roose	velt Field						***
Measured	Ву:					٠			
Distance to	o Pur	nping V				Pha	ase of Test:	Drawdown	Recovery
Elevation I	MP:		•						a .,
Remarks:								Page:	<u>of</u>
Date		ime	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	Re	marks
9/10/10	12	10	100	36.57		/			
		20	110	36.58					
		36		36.55					
		300	150	35.5y					
	13	30	180	35,05					
	- No. 20	(00)	210	36.02					
1433	14	1305	240	36.10					
	15	00	270	36.31					
	15		300	36,28					
			330						
			360		27				
			390						
			420						
			450						
			480		•				
			510						
			540						
			570						
			600						
			660						
			720						
			780						
			840						
			900		ļ				
			960	<u> </u>	1			-	
			1020				-		
			1080					-	
			1140						

appearant of the p	CALVANTA DECENTE								Contract and Contract No.	4 K K K K	V
Pumping ⁷	Test Field Da	ıta Sheet		9				Well No.	GWP-	10	N
Site	Old Roosev	elt Field			e e						
Measured	By: Fax	W N. Dou	16HING	Thee sei	nach						
Distance t	o Pumping W	Vell:	//	//~	Pha	ase of	Test:	Drawdov	Reco	very	
Elevation		150			0						
Remarks:	•		1				١	Page:	of_	5	
			\ .		6.	•		3			
Date	Time	Elapsed	DŤW	Drawdown	Orifice	- DESCRIPTION	ping		Remarks		1.0
	poplatio	Time (min)	(ft)	(ft)	Pressure (in)		ate om)			CM 9	18/10
9/7/10	109/014	7 Static	101.6	~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	>	Puns	aft.or	7.	
11/1	1030.5	0.5	101.62			1	la	Tests		1030	0
9/2/11	1031	1	101.62	*		V	of	Deadi	n55 bu?	_	Harth
1	1032	2	101.67					1	1		
	1033	. 3	101.67			9					
	1034	4	101.73			n					
	1035	5	101.62			13	180				
	1036	6	101.64			10					
	1037	7	101.64			1					
	1038	8	101.64			6					
	1039	9	101.65			1					
	1040	10	101-04			8					
		11				2					
		12				d					
	1043	13	101.76		·	1					je.
	1044	14	101.78			-					
	1046	15	101.8						ř.		
	1050	20	101.66				6,				
	-	25				0	of the same				
	1100	30	101.71			RI			4	10 91	12/11
	1105	35	101.75			9	5	Humi	off. Al	11	/
	1110	40	101.74			1		PM.	Mota	noi	repr Leoding
	1115	45	101.74				10	1,000	y and y		John Marin
	1120	50	101.8			21	8/8/10				
	1130	60	101.6			9	5	Miles	unat sta	rtire	cording
	1140	70	10/80						•		
	1150	80	101.44								
1	1200	90	101. PH				-		ř.		

							N
Pumping T	est Field Da	ıta Sheet	3				Well No. BUS. 10
	Old Roosev						
Measured	By:	see per	narles	7			
	o Pumping V				Pha	ase of Test(Drawdown Recovery
Elevation N	MP:					`	
Remarks:							Page: 2_of5
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	Remarks
9/7/10	1210	100	101.94			0/	*
1	17:20	110	10191				
	1230	120	101.97				
		150	101				
		180					
	1476	210					
	1430	240	101.87			Ø	
	J-IC.	270					No.
2		300					W
		330					Un.
	1625	360	101.81				off Pump ON.
	у	390					Call "
		420					8,01
		450					off
	1855	480,	40.19			Ø	of Pump of
		510					. //
		540					0.00
		570					Gal
	7030	600	39.56			0	- OFF Gump off
	1	660					7 77
		720	- 1/2				
	-	780	M) 9/81	10			Pung Majeji
J	2230	720	39.48			0	Majap 10FF
		-900/	and also	4			
		960	11111				
		4020		29/0/10			Pump gne/s/1.
9/8/10	QQ 33	1080	40.33			8	OFF "
		1140	Maja	Vi			

Dumaina T	oct Field De	ta Shoot					Well No. B/ds 10
Pumping I	est Field Da	ia Sheel					Well No. B <u>ldz 10</u> GWP-10
Site	Old Roosev						00110
Measured	By:	ple re	mark	21			
Distance to	Pumping W				Pha	se of Test:	Drawdown Recovery
Elevation N	ИР:						
Remarks:	10 00						Page: 3 of
			DTM	Droug com	Orifice	Pumping	Remarks
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Pressure (in)	Rate (gpm)	Hemano
9/8/10		1200	09/8	110		-	
11	-	1260	anni				Pans
	0230	964320	39.45			A	1 Off
		-1380					
		1440					
		4500	, 1080	an9/2	110		2
	0430	1560	101.46	,, ,		Ø	OFF YUNDON
		1620					an9/2/10
		1/680	m9/0	V10			. 1
		1740 6	12007	m 9/8/	10		
	0630	1800	101.65	, ,		Ø	off Kumpon.
	0826	1860-	101.71			Ý	St Purson.
		-1920 .	(1320	Dang,	2/10		AN 9/8/10
	1 -	1980		7	/		
		2040			1.		
		2100					
		2160					
		2220			1		
		2280		0	19/19		
		2340		no T			
		2400	(PI			
		2460		1			
		2520					
		2580					
		2640				,	
		2700					
		2760					
		2820					

							0
Pumping T	est Field Da	ta Sheet					Well No. <i>GWP-10</i>
Site	Old Roosev	elt Field					
1 2		he ser	nonles				
	Pumping V				Pha	ase of Test:	Drawdown Recovery
Elevation N					•		.1 -
Remarks:	<u></u>						Page: 40f 5
			7/				
Date	Time	Elapsed	DTW (ft)	Drawdown (ft)	Orifice Pressure	Pumping Rate	Remarks
		Time (min)	(11)	(11)	(in)	(gpm)	
		_1200°					
		-1260)		6	m9/81	10	
		71320		<i>'</i>	- 7/		
-		1380					
9/8/10	1038	1440	101.28				PUMP ON IN
11 1		1500					
11	1235	1560	101.87	1 5			Sumo ON JO.
		1620					
	1424	1680	101.82				Pupon FR
		1740					
	1626	1800	40.41				Pupo off FR
		1860					10
	1824	1920	39,69		-		Pup. St FR
		1980					
	2026	2040	100.98				PUMPON ZK
0	_	2100					,
	2229	2160	39,97				TUMP OFF EM
		2220					
9/9/10	0025	2280	38,05				RUMP OFF EK
1.00		2340					
11	0225		39,35				PUMP OFF EK
		2460					
((0424	2520	101,5	3			PUMPON EK
		2580					
	0625		10/73				PUMPON EM
		2700			-	per "	
	0825	2760	101.85				Pupor FR
		2820					3

							Wall No	GWP-10
Pumping Te	est Field Dat	a Sheet					Well No.	
Site	Old Roosev	elt Field						
Measured E	Зу:	see per	man	j 				
Distance to	Pumping W				Pha	se of Test:	Drawdov	wn Recovery
Elevation M	1P: _							- 5
Remarks:	SOLIN	STERRIA	1#44	02			Page:	5_of5
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)		Remarks
9/9/16	1025	2880	161.92		, ,		020	TR
17 5770		2940						
	1225	3000	102.00				Pon	TR
	/ 50	3060				1		
	1425	3120	102.00				Rypo	n Tr
	, ,	3180			,			
	1627	3240	101.89				Pup	m FR
		3300						10 570
	1824	3360	40.13				Rypo	H TR
		3420						^ _
	2025	3480	39.60				RUMI	OFF EK
		3540					0	0 5 - 4
	2226	3600	39,3	4			1Vs	uf otick
		3660					9	1 10 10 1
9/10/10	0024	3720	101,58				PUM	ON ER
7 770	,	3780						
	0225	3840	39.14	/			PUMI	OFF CH
		3900	,				<u> </u>	0 701
	0425	3960	101.42		-		TUMI	ON ER
	00	4020						P - 10/
	0624	4080	10/06	9			PUM	ON ELL
		4140						<i>F</i> 0
	6826	4200	101.88	1			Ryp 6	n FR
		4260					0	on IR.
	1010	4320	101.9	9			Pup	on WC.

								0.00
Pumping T	est Field Dat	a Sheet					Well No.	GWP-10
Site	Old Roosev	elt Field	* 4					
Measured	By:	TNOOUS	HENTY					
	Pumping W				Pha	se of Test:	Drawdowr	n Recovery
Elevation N								1 4
Remarks:							Page:	of
					Ovition	Pumping	F	Remarks
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Rate (gpm)		ä
9/10/11	1030	Static	7	-			Stop	1251.
11.91	1030.5	0.5			Y)			
	1031	1						
	1032	2					04.10)
	1033	. `3					GWP-	
	1034	4	101.85					ON.
	1038	5	101.84				DROOM	KINEMY
	1036	6	101.89				Pun	yon an
	1037	7	101.9					ļ
	1638	8					194	
	1039	9	101.91					
	1040	10						
	1041	11	_				20	
	1042	12	101.88			4	il in the second	
	1043	13	101.88					
	1044	14	101.25					1
	1045	15	101.8					
	1050	20	101,94					
	1055	25	101.95					
	1100	30	101.75				-	
	1105	35	101.0					
	1110	40	1/01.23					
	1115	45	101.8					
	1120	50	101.8					
	1130	60	101.76		-	1		
	140	70	101.69	î				
	1150	80	101.67	2				100
	1200	90	101.7	5				UT

*							- 1			1
	Pumping To	est Field Da	ita Sheet		•			Well No.	SUD-10	
	Site	Old Roosev	velt Field			*				4
	Measured 8	Ву:	INDOU	SHEATY					_	
	I .	Pumping V		/		Pha	ase of Test:	Drawdown	Recovery	
	Elevation M		*		570					
	Remarks:							Page:	Pecavery 2 of 1	
	Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)		marks	
	9/10/10	1210	100	101.75				5WP-1	OON.	
90	1/1/	17236	110	101.76				(Ab)		
1/0/2 aliola		12303	120	101.69				M		
2/10/2		7	150					Or .		
			180							
		/_	210	_						
		1422	240	61.54		6		6WP-10 1	N FR	
			270	1						
		1	300	1					-	
		1700	330	101.67				Pump. 0	N. 400	
	9/10/10	1705	360		OVE			ENDOF	N. GAD READIN	105
	1/1		390							
			420							
			450							
			480						0	
			510							
			540			1,0	1			
			570		g	19				
			600		MI					
			660	(ŀ
			720							
			780							
		19	840			1/				
			900							1
			960							
			1020							
			1080				-		and the same and a same a same and a same an	
			1140							

101.67

Pumping T	est Field Da	ıta Sheet		+			Well No.	GWP-11
Site	Old Roosey	velt Field Allown Vell:				5	OLWS	T
Measured	By:	Allan	Unnte	VIDEO NO	mar (15	562	4005	03
	o Pumping V	Vell.	FIUFITU	1 pre 1º	Pha	ase of Test:	Drawdov	n Recovery
Elevation N	or amping r	, , , , , , , , , , , , , , , , , , ,						
Remarks:	vii .						Page:	/ of <u>/</u>
nemarks.							3	
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)		Remarks
9-7-10	10:12	Static	76.2			1210		-
1 10	10:30	0.5					Start	L test
9-7-10	10:32	210	76.29	÷		1209		er erten manne
, , , , ,	1	2						
9-7-11	10:34	4.8	76.31		25	1208		
9-7-11	10:38	8 4	76.3	8		1208		
9-7-10	10:43	13 &	76.37			1207		1 0
9-7-10	10:49	1963	76.37			1207		
9-7-10	10:54	26 x 1				1207		17
9-7-11	-	278 N	76.4			1207		
, , , ,	10.51	9 \$	764	A.H. 91	/10			
9-7-X	11:00	30 ±0 1 11 3 72 ±2 0	76.4			1207		
, , , , ,	7,,,,,,	11.1	7642	A.H.9/	10		100	
9-7-10	11:02	72-12-6	7642			1209	4	
7 6 10	17.00	13						21
3.		14			0.1			
9-7-10	11:07	37 15	76.47			1207		
9-7-11		42.20	76.46			1206	2	
9-7-1	11:17	47280	76.46			1207		
9-21	11:22	52 30	76.45			1208		
9-7-11	11:27	5735	76.46			1208		
	11:32		76.54			1208		
	1	<i>A</i> 5						
	1/1	50	///					
/ (1	60	1					
9/2/10	11:40	70	76.53		W.			
1/1/1	11:50	80	76.46			1207		
. /	11.00		10.0			1207		

,							Mall No	6WP-11
Pumping ⁻	Test Field Da	ata Sheet					well No.	<u> </u>
Site	Old Roose	velt Field						
Measured	Ву:	Dee ren	nanks					
	o Pumping V				Pha	ase of Test:(Drawdown	Recovery
Elevation	MP:	F#0						216
Remarks:							Page:	2 of 4
Date	Time	Elapsed	DTW	Drawdown	Orifice	Pumping	R	emarks
		Time (min)	(ft)	(ft)	Pressure (in)	Rate (gpm)		
912/60	12:10	100	76.51			1209	A. Kun	ter
1	12:20	110	76.54			1208	/	
	/2:30		76.54			1208	ď	
	7 8	150	76874	Ś				
		180				• .		
	· (1) =:	210						
	1430	240	76.52			1208		
		270						
		300						
Make		330						
	1628	360	76.43			1208		
8	12	390						
		420					-	
		450						
	1830	480	73.30	. •		1231		
		510						-
		540						
		570	·					
	2032	600	72.83			1233		
	-	* 660				1- 7		
Y	2232	· 720	72.68			1235		
	- 40	780						
98	0037	840	73.26	,	-	1231		
11	- 44	900	2011			1021		
2	234	960	72 Cd	-	-	1236		
11 2	1122	1020	1000	-	-	122.00		
Mar	438	1080	18.0	}	-	1918	-	
1		1140						

Pumping T	est Field Da	ata Sheet					Well No.	6WP-11	\mathbb{T}^{1}
Sito	Old Roosev	velt Field							
Measured		Dei sem	Calla						
\$50 to \$40	o Pumping V		(0110)		Pha	ase of Test:	Drawdow	n Recovery	
Elevation I	VA. 1878			•	•				
Remarks:							Page:	3 of 4	22
Date	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	F	Remarks	
9/8/10	630	1200	7622		(1.17)	1210			
170110	1	1260	1						į
	0830	1320	76.44			1210	F. Rob	unsm.	
		1380			×.			à	
	1044	1440	7652		14	1206	JUD.		
		1500						4.	
	1237	1560	76.53		-	1206	Javo.		_
		1620	,						
	1428	1680	76.42			1209	FL		\dashv
		1740							_
	1630	1800	73.41			1230	FR		
	"	1860							_
	1828	1920	72.83			1233	FR		_
		1980					4 . =		_
	21732	2040	75.26	\$		1219	ME		
		2100	<u> </u>						
4	22^{33}	2160	73.11			1232	ME		_
Υ.		2220							FINA
9/9/10	D33	2280	75			1234	ME		TIGER
77		2340				<u> </u>	<u> </u>		
9/9/10	234	2400	262			1236	MR		
1		2460		-					19 19
- (4-57	2520	1	}		1214	MR		
		2580					100		_
	634	2640	16.20			1210	MR		
		2700				- N			
	0829	2760	76.49			1210	TR	Jan	
Y	0829	2820	76.49			1210	TR	Jil	

Pumpin	ng Te	est Field Da	ta Sheet					Well No.	6wp-11
Site		Old Roosev		. ,					
Measur	red E	By:	bee ren	nances					
Distanc	ce to	Pumping W				Pha	ase of Test:	Drawdowr	Recovery
Elevation	on M	IP:							11.
Remark	ks:		-					Page:	4_of_4
Date	е	Time	Elapsed Time (min)	DTW (ft)	Drawdown (ft)	Orifice Pressure (in)	Pumping Rate (gpm)	R	emarks
9/9/	lo	1028	2880	76.66			1208	FA	
,,,,,			2940						
		1228	3000	76.78			1208	IL	٠.
			3060						
		1428	3120	76.65			1207	FR	2
			3180						
		1630	3240	76.51			1202	TR	
			3300	, ,					
		1828	3360	73.29			1233	FR	
			3420						
		2032	3480	72.80			1234	MR	
	-	0	3540	10-2					
		2233	3600	2063			1236	ME	
1	-		3660	10.					
9/11	110	1731	3720	2 90			1214	14	
177	110	V	3780	136			10017		
1		230	3840	1263			1236	ME	
		9	3900	10.				/ -/-	
1		431	3960	100			1216	118	G
		-	4020	13.				1	
		1 30	4080	76.03	5		1207	LIFE	
		0	4140	70.			1		
-		0829	4200	76.49			1210	TR	
1	1	00001	4260	1					
	\	D 13	4320	76.51			1208	FR	

x

ŧ

Pump	oing T	est Field Da	ta Sheet				9	Well No.	GWP-11
Site		Old Roosev	elt Field						
			Allan F	lunter	^				*
		Pumping W				Pha	ase of Test:	Drawdow	n Recovery
	ation M		# . s						
Rema								Page:	
1101111		-			-				
Da	ate	Time	Elapsed	DTW	Drawdown	Orifice Pressure	Pumping Rate	F	Remarks
			Time (min)	(ft)	(ft)	(in)	(gpm)		
9/10	rho		Static	1		-		Stop	, Test
77			0.5						
			1						
	\		2					obser	vations
(1033	. 3	76.48				by A.	Hunter
			4						
		1035	5	76.52	,				
		1036	6	76,52					
		1037	7	76.5			1209		
			8						
		1039	9	76.51			1205		
		1040	10	76,55					
		1041	11	76,55			1207		
		-	12						
		1043	13	76.50		.65	1207		12
		1044	14	76.46			1206		
		1045	15	16.44			1207		
		1050	20	76,47					
	AH.	1055	25	76.48	A.H		1207		
	9/10	1000	30	76,48	9%		1209		
liv	人	1008	35	76,42	-		1207		
	A.H.	1050	40	163	A.H.	-	1207		
	9/10	1115	45	76.41	2/10		1207		
\Box		1120	50	76.4			1207		
		1130	60	76,39			1207		
		1140	70	76.35			1205		-
	,	1150	80	76.35			1205		
V		1200	90	76.36	2		1207	Q	

Pumping 1	Γest Field Da	ata Sheet	1	•			Well No.	GWP-11
Site	Old Roosev	velt Field	11	-/100	10100 000	h		
		Allan	HUNTE	V/fle	ENNUM	V.J	D	
	o Pumping V	Vell:			Pha	ase of Test:	Drawdow	
Elevation I							D	2 of 2
Remarks:							Page:	<u> </u>
Date	Time	Elapsed	DTW	Drawdown	Orifice	Pumping		Remarks
		Time (min)	(ft)	(ft)	Pressure (in)	Rate (gpm)		
	1210	100	76.34	-		1207	A.H.	
	1220	110	76.29			1207	A. H.	
	1230	120	76.36			1208	A.H.	
	1,000	150						
		180						
		210						
	1425	240	76.02			1212	F.R.	-
		270						
		300						9
	1712	330	74.02		2	1225	A.H.	
		360	1				End	of
		390					Obse	of rvations
-		420						
		450						
		480						
		510						
N		540						7
1		570		÷	1	100	0	
		600		AW	all	0/20		
		660		MA	9///			
		720						
		780					-	
		840						
		900						
		960						
		1020						
		1080						1
-		1140	-					

Appendix E
Weather Data

Lat: N 40 ° 45 ' 3 " (40.751 °) Lon: W 73 ° 36 ' 47 " (-73.613 °)

Elevation (ft): 115 MADIS ID: AT063

Hardware: Davis Vantage Pro

Weather Station Software: WeatherDisplay:10.37

KNYCARLE1

Carle Place, Carle Place, NY

																		Gust	D.T. T.
2010		Temp. (°F)			Dew Point (°F	5)	Barometric Pressure, Daily Average, Humidity (%) Sea Level (in Hg) Visibility (mi)							Wind	(mph)	Speed (mph)	Daily Total Precipitation (inches)		
August	high	avg	low	high	avg	low	high	avg avg	low	high	avq	low	high	avg	low	high	avg	high	sum
8/1/2010	79	72	65	62	58	52	83	63	41	30.06	30.00	29.93	-	avy -	- 10W	7	2	14	0
8/2/2010	81	75	68	64	61	54	87	64	43	30.11	30.08	30.05	-		-	8	3	18	0
8/3/2010	81	77	72	65	63	60	73	62	57	30.09	30.07	30.05	-	-	-	6	4	16	0
8/4/2010	87	82	76	73	69	64	87	67	57	30.05	29.88	29.7	-	-	-	9	5	18	0
8/5/2010	93	84	75	74	70	63	93	65	37	29.7	29.62	29.53	-	_	-	14	3	26	0
8/6/2010	87	81	66	70	59	44	83	51	25	29.79	29.68	29.56	-	-	-	8	2	18	0
8/7/2010	82	72	59	69	56	50	84	61	35	29.95	29.88	29.8	-	-	-	9	2	17	0
8/8/2010	86	77	69	73	67	57	92	73	38	30.01	29.98	29.94	-	-	-	10	3	20	0
8/9/2010	89	80	72	73	68	59	96	70	44	29.98	29.93	29.88	-	-	-	9	3	20	0
8/10/2010	90	81	74	72	67	62	86	62	43	29.89	29.84	29.78	-	-	-	6	1	14	0.01
8/11/2010	89	78	72	72	68	62	95	73	41	29.83	29.80	29.76	-	-	-	7	2	13	0
8/12/2010	76	73	70	69	65	61	94	77	61	29.92	29.87	29.82	-	-	-	6	1	12	0.03
8/13/2010	78	72	67	62	57	51	85	60	40	30.05	29.99	29.92	-	-	-	8	2	16	0
8/14/2010	76	68	56	61	55	48	93	65	41	30.12	30.09	30.06	-	-	-	8	2	14	0
8/15/2010	76	71	62	69	63	60	96	77	58	30.06	30.01	29.95	-	-	-	9	3	20	0.06
8/16/2010	83	76	69	74	71	63	96	86	71	29.95	29.91	29.86	-	-	-	7	2	14	0.05
8/17/2010	90	80	72	74	68	58	99	70	36	29.97	29.93	29.89	-	-	-	7	1	116	0
8/18/2010	77	76	72	66	59	55	76	57	47	30.04	29.98	29.92	-	-	-	2	1	6	0
8/19/2010	87	76	64	68	61	54	99	64	34	29.92	29.85	29.78	-	-	-	10	2	14	0
8/20/2010	88	78	66	68	60	44	96	59	23	29.95	29.88	29.8	-	-	-	6	2	14	0
8/21/2010	80	74	62	63	58	48	80	58	45	30.02	29.99	29.95	-	-	-	7	2	13	0
8/22/2010	79	75	70	75	72	69	100	92	78	29.97	29.85	29.72	-	-	-	14	4	24	2.7
8/23/2010	72	69	67	72	67	60	100	93	76	29.9	29.81	29.71	-	-	-	9	5	20	0.05
8/24/2010	68	66	62	63	60	58	95	82	74	29.96	29.91	29.86	-	-	-	8	5	21	0.11
8/25/2010	67	66	63	65	64	62	99	95	94	29.86	29.82	29.78	-	-	-	7	2	16	0.22
8/26/2010	81	73	65	65	59	50	91	64	34	30	29.92	29.83	-	-	-	9	2	18	0
8/27/2010	78	68	56	54	51	46	92	59	35	30.09	30.05	30	-	-	-	8	2	14	0
8/28/2010	78	68	54	62	54	51	95	64	39	30.18	30.14	30.09	-	-	-	7	2	12	0
8/29/2010	93	76	58	63	58	50	96	60	24	30.17	30.11	30.05	-	-	-	7	1	10	0
8/30/2010	90	77	61	64	59	53	95	59	29	30.17	30.12	30.07	-	-	-	7	2	14	0
8/31/2010	94	81	66	67	63	59	90	59	32	30.11	30.04	29.97	-	-	-	7	1	13	0
9/1/2010	93	82	70	69	65	55	91	60	29	30.02	29.97	29.91	-	-	-	7	1	12	0
9/2/2010	89	81	74	70	66	61	77	62	45	29.96	29.92	29.88	-	-	-	9	2	22	0
9/3/2010	82 79	77 74	72 66	74 68	70 50	64 40	93 80	79 44	65 28	29.88 29.8	29.65 29.61	29.42 29.42	-	-	-	7 18	2 6	17 28	0
9/4/2010	79	66	54	50	43	38	78	44	28			29.42	-	-	-	18		28	
9/5/2010	76	66	54	61	50 50	40	78 94	61	29	30.05 30.2	29.93 30.13	30.05	-	-	-	9	3	16	0
9/6/2010 9/7/2010	82	74	66	68	64	58	83	72	53	30.2	30.13	29.9	-	-	-	12	4	21	0
9/8/2010	89	74	65	69	57	40	86	56	19	29.91	29.75	29.59	-	-	-	9	4	24	0.06
9/8/2010	71	65	62	50	49	48	64	57	46	29.91	29.73	29.59	-		-	12	5	22	0.06
9/10/2010	71	64	59	53	50	48	75	61	47	29.77	29.73	29.09	-	-	-	7	2	16	0
9/10/2010	77	66	53	57	51	46	92	62	38	30	29.02	29.74	-	-	-	7	2	13	0
9/12/2010	66	62	58	58	56	52	96	80	63	30.02	29.99	29.96		_	-	5	2	13	0.07
9/13/2010	72	63	60	62	59	57	100	89	59	30.02	29.91	29.82	-		-	5	1	12	0.07
9/14/2010	76	66	56	62	51	42	99	65	32	29.87	29.85	29.82	-		-	12	2	20	0.07
9/15/2010	70	66	57	45	44	41	61	44	36	30.12	30.00	29.87	-		-	8	3	18	0.01
9/16/2010	72	62	49	68	55	43	97	80	55	30.12	29.95	29.76	-	-	-	9	3	21	0.33
9/17/2010	71	66	59	67	59	49	99	78	53	30.09	29.90	29.71	-	_	_	7	2	14	0.35
9/18/2010	70	63	58	56	54	51	90	72	54	30.18	30.13	30.08	-	-	-	6	1	13	0.55
3/10/2010	, ,			00	U 04	01		'-	0-7	00.10	00.10	00.00		L	l		<u> </u>	10	

Lat: N 40 ° 45 ' 3 " (40.751 °) Lon: W 73 ° 36 ' 47 " (-73.613 °)

Elevation (ft): 115 MADIS ID: AT063

Hardware: Davis Vantage Pro

Weather Station Software: WeatherDisplay:10.37

KNYCARLE1

Carle Place, Carle Place, NY

																		Gust	
										Barometric Pressure, Daily Average,							Speed	Daily Total	
2010		Temp. (°F)			Dew Point (°F)	Humidity (%)			Sea Level (in Hg)				Visibility (mi)		Wind	(mph)	(mph)	Precipitation (inches)
9/19/2010	77	66	54	63	58	53	99	76	53	30.14	30.04	29.94	-	-	-	5	1	10	0
9/20/2010	71	65	55	62	48	40	83	58	33	30.07	29.98	29.89	-	-	-	8	3	20	0

3/6/2011 Garden City.xls

Appendix F Water Level Data Graphs

10/5/2010 EW-1S Pump Test.xls

Appendix G
Step Test Analyses

EW-1S

Data Set: C:\...\EW-1S_Step_Test.aqt

Date: 06/21/11 Time: 21:56:01

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

AQUIFER DATA

Saturated Thickness: 452. ft

Aquitard Thickness (b'): 20. ft

Aquitard Thickness (b'): 1. ft

WELL DATA

Pumpin	g Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	EW-1S	2	105932.021	86070.802
EW-1S	2105932.021	86070.802	9			

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

 $T = 2.716E+4 \text{ ft}^2/\text{day}$ S = 5.58E-5 Sw = 0.

 $C = \frac{10}{0} \cdot min^2/ft^5$ $P = \frac{0}{1.889}$

EW-1I

Data Set: C:\...\EW-1I_Step_Test.aqt

Date: 06/21/11 Time: 21:54:01

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

AQUIFER DATA

Saturated Thickness: 452. ft Anisotropy Ratio (Kz/Kr): 0.01 Aquitard Thickness (b'): 20. ft Aquitard Thickness (b"): 1. ft

WELL DATA

Pumpin	g Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	□ EW-1I	2105927.5	(186080.238	
EW-1I 2	105927.5(1	86080.238	3			

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

 $\begin{array}{lll} T &= 5.785 \underline{E} + 4 & \text{ft}^2/\text{day} & S &= \underline{0.0161} \\ \text{r/B} &= \underline{0.8375} & Sw &= \underline{0}. \\ C &= \underline{0}. & \text{min}^2/\text{ft}^5 & P &= \underline{1.917} \\ \end{array}$

EW-1D STEP TEST

Data Set: C:\...\EW-1D_Step_Test.aqt

Date: 06/21/11 Time: 21:51:29

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

AQUIFER DATA

Saturated Thickness: <u>452.</u> ft Anisotropy Ratio (Kz/Kr): <u>0.01</u> Aquitard Thickness (b'): 20. ft Aquitard Thickness (b"): 1. ft

WELL DATA

Pumping	g Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	□ EW-1D	2	105923.00	86089.350
EW-1D 2	105923.03	86089.350	9			

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

 $\begin{array}{lll} T &= \underline{3.858E+4} \text{ ft}^2\text{/day} & S &= \underline{0.246} \\ \text{r/B} &= \underline{2.787} & Sw &= \underline{0}. \\ C &= \underline{0}. \text{ min}^2\text{/ft}^5 & P &= \underline{1.787} \\ \end{array}$

Appendix H Extraction Well Pumping Well Data Analyses

GWX-10019, EW PUMPING

Data Set: C:\...\GWX-10019-EW_Pump_Test-HJ.aqt

Date: 06/24/11 Time: 15:01:17

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells

X (ft) Y (ft)

2105573 185553

(ft)		Well Name
553		• GWX-10019
0.802	29	
0.238	3	

	X (ft)	Y (ft)	
2	105876.581	85981.259)

Observation Wells

GWP-10 2105573 185553 EW-1S 2105932.02186070.8029 EW-1I 2105927.5(186080.2383 EW-1D 2105923.03186089.3509

SOLUTION

Aquifer Model: Leaky

Solution Method: Hantush-Jacob

 $T = \frac{4.866E+4}{0.1} \text{ ft}^2/\text{day}$

S = 0.0006809Kz/Kr = 0.01

b = $\frac{0.1}{452}$. ft

Well Name

GWX-10020, EW PUMPING

Data Set: C:\...\GWX-10020-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 11:43:54

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

WELL DATA

Observation Wells Pumping Wells X (ft)

ш		9					
	Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
	GWP-10	2105573	185553	• GWX-10020	2106480.13	185775.454	
	EW-1S 2	105932.021	86070.802	9	·		
	EW-11 2	105927.5(1	86080.238	3			
	EW-1D 2	105923.01	86089.350	9			
П							

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

 $= 7.464E+4 \text{ ft}^2/\text{day}$ Т = 0.0007254

= 0.1992 r/B Kz/Kr = 0.01b = 452. ft

MW-1S, EW PUMPING

Data Set: C:\...\MW-1S-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 16:27:28

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells Observation Wells

l	Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
	GWP-10	2105573	185553	∘ MW-1S	2106106.46	186328.080
	EW-1S 2	105932.021	86070.8029)	·	
	EW-11 2	105927.5(1	86080.2383	3		
	EW-1D 2	105923.001	86089.3509)		
ı						

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

 $T = \frac{6.051E+4}{0.1100}$ ft²/day $S = \frac{0.0002997}{0.01}$

r/B = 0.1199b = 452. ft

MW-11, EW PUMPING

Data Set: C:\...\MW-1I-EW_Pump_Test-HJ.aqt

Date: 06/24/11 Time: 15:53:23

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells Observation Wells

Well Name		X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10		2105573	185553	∘ MW-1I	2	106083.14	186321.746
EW-1S	2	105932.021	86070.802	.9			
EW-1I	2	105927.5(1	86080.238	3			
EW-1D	2	105923.01	86089.350	9			

SOLUTION

Aquifer Model: Leaky

 $T = 4.818E+4 \text{ ft}^2/\text{day}$

r/B = $\frac{0.1}{452}$. ft

Solution Method: Hantush-Jacob

S = 0.0007946

Kz/Kr = 0.01

MW-2S, EW PUMPING

Data Set: C:\...\MW-2S-EW_Pump_Test-NU.aqt

Date: 06/26/11 Time: 16:18:59

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

AQUIFER DATA

Saturated Thickness: 452. ft

WELL DATA

	Pumping W	ells		Observation Wells			
Well Name		X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	21	05573	185553	∘ MW-2S	2	106577.521	86411.469
EW-1S	2105	5932.021	86070.802	29			
EW-1I	2105	5927.5(1	86080.238	33			
FW-1D	2105	5923.0:1	86089.350)9			

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 4.631E+4 \text{ ft}^2/\text{day}$ S = 0.001017Sy = 0.0572

 $\beta = \overline{0.06}$

MW-2I, EW PUMPING

Data Set: C:\...\MW-2I-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 16:34:51

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells
Observation Wells

Well Name

Observation Wells

Well Name		X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
GWP-10		2105573	185553	∘ MW-2I	2106564.06	186423.590
EW-1S	2	105932.021	86070.802	9		
EW-1I	2	105927.5(1	86080.238	3		
EW-1D	2	105923.001	86089.350	9		

SOLUTION

Aquifer Model: <u>Leaky</u> Solution Method: <u>Hantush-Jacob</u>

T = $\frac{5.028E+4}{0.1}$ ft²/day S = $\frac{0.001024}{0.01}$ Kz/Kr = $\frac{0.001024}{0.01}$

 $b = \frac{0.1}{452}$. ft

MW-3S, EW PUMPING

Data Set: C:\...\MW-3S-EW_Pump_Test-NU.aqt

Time: 16:17:21 Date: 06/26/11

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

AQUIFER DATA

Saturated Thickness: 452. ft

WELL DATA

	Pumping Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	MW-3S	2107725.8(185	540.091	
EW-1S	2105932.021	186070.8029	9			
EW-1I	2105927.5(1	186080.2383	3			
FW-1D	2105923 03	186089 3509)			

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 2.05E+4 \text{ ft}^2/\text{day}$ S = 0.0004107 $Sy = \overline{0.0572}$

 $\beta = 0.2269$

MW-3I, EW PUMPING

Data Set: C:\...\MW-3I-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 15:54:11

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells Observation Wells

Well Name		X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
GWP-10		2105573	185553	· MW-3I	2107740.05	185546.054
EW-1S	2	105932.021	86070.802	9		
EW-1I	2	105927.5(1	86080.238	3		
EW-1D	2	105923.0(1	86089.350	9		

SOLUTION

Aquifer Model: <u>Leaky</u> Solution Method: <u>Hantush-Jacob</u>

 $T = \frac{4.785E+4}{0.01}$ ft²/day $S = \frac{0.0009827}{0.01}$

r/B = 0.1b = 452. ft

SVP-10 PORT 8, EW PUMPING

Data Set: C:\...\SVP-10-8-EW_Pump_Test-NU.aqt

Date: 06/26/11 Time: 22:24:56

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

AQUIFER DATA

Saturated Thickness: 452. ft

WELL DATA

	Pumping weils		Observation wells			
Well Name	X (ft)	Y (ft)	Well Name	X	(ft)	Y (ft)
GWP-10	2105573	185553	∘ SVP-10-8	21058	399.10	186072.675
EW-1S	2105932.021	86070.802	29			
EW-1I	2105927.5(1	86080.238	33			
EW-1D	2105923.0(1	86089.350)9			

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 2.036E+4 \text{ ft}^2/\text{day}$ S = 0.0003179

Sy = 0.0572 $\beta = \overline{0.01}$

SVP-10 PORT 5, EW PUMPING

Data Set: C:\...\SVP-10-5-EW_Pump_Test-HJ-rev.aqt

Date: 06/26/11 Time: 12:56:20

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells Observation Wells

Well Name		X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10		2105573	185553	∘ SVP-10-5	2	105899.10	186072.675
EW-1S	2	105932.021	86070.802	9			
EW-1I	2	105927.561	86080.238	3			
EW-1D	2	105923.001	86089.350	9			

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = 4.217E+4 ft²/day S = 0.0003005

r/B = 0.0798 Kz/Kr = 0.01

b = 452. ft

SVP-10 PORT 3, EW PUMPING

Data Set: C:\...\SVP-10-3-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 13:06:31

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells Observation Wells

Well Name		X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10		2105573	185553	∘ SVP-10-3	2	105899.13	86072.675
EW-1S	2	105932.021	86070.802	9			
EW-1I	2	105927.5(1	86080.238	3			
EW-1D	2	105923.001	86089.350	9			

SOLUTION

Aquifer Model: <u>Leaky</u> Solution Method: <u>Hantush-Jacob</u>

T = $\frac{4.926E+4}{0.1}$ ft²/day S = $\frac{0.001319}{Kz/Kr}$ = 0.01

b = $\frac{6.1}{452}$ ft

SVP-10 PORT 1, EW PUMPING

Data Set: C:\...\SVP-10-1-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 15:41:15

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells

Observation Wells

Y (ft) V (ft) Well Name

Y (ft)

Well Name		X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
GWP-10		2105573	185553	∘ SVP-10-1	2105899.10	186072.675
EW-1S	2	105932.021	86070.802	9		
EW-1I	2	105927.5(1	86080.238	3		
EW-1D	2	105923.001	86089.350	9		

SOLUTION

Aquifer Model: Leaky

 $T = 4.133E+4 \text{ ft}^2/\text{day}$

r/B = $\frac{0.1}{452}$. ft

Solution Method: <u>Hantush-Jacob</u>

S = 0.0008352Kz/Kr = 0.01

SVP-11 PORT 2, EW PUMPING

Data Set: C:\...\SVP-11-2-EW_Pump_Test-HJ.aqt

Date: 06/26/11 Time: 12:07:34

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

WELL DATA

Pumping	g wells		
	X (ft)	Y (ft)	Well Name

	9		
Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	
EW-1S	105932.021	86070.802	29
EW-1I	105927.5(1	86080.238	33
EW-1D	105923.01	86089.350)9

SOLUTION

Aquifer Model: Leaky

 $= 3.6E + 4 \text{ ft}^2/\text{day}$

= 0.1r/B b = 452. ft

Т

Solution Method: Hantush-Jacob

Observation Wells

X (ft)

2105597.0(184603.935

Y (ft)

= 0.0004336

Kz/Kr = 0.01

SVP-11-2

SVP-2 PORT 4, EW PUMPING

Data Set: C:\...\SVP-2-4-EW_Pump_Test-HJ.aqt

Date: 06/24/11 Time: 16:57:17

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

WELL DATA

Observation Wells Pumping Wells

Y (ft)

Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
GWP-10	2105573	185553	∘ SVP-2-4	2106214.4{1	87385.723
EW-1S 2	105932.021	86070.8029	9		
EW-11 2	105927.5(1	86080.2383	3		
EW-1D 2	105923.0(1	86089.3509	9		

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

 $= 6.68E + 4 \text{ ft}^2/\text{day}$ Т = 0.001531= 0.1 $Kz/Kr = \overline{0.01}$ r/B

b = 452. ft

SVP-3 PORT 3, EW PUMPING

Data Set: C:\...\SVP-3-3-EW_Pump_Test-HJ.aqt

Date: 06/24/11 Time: 23:45:40

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells

X (ft) Y (ft)

		Observation	n Wells	
	Well Name		X (ft)	Y (ft)
	∘ SVP-3-3	2	106542.341	86966.005
റ				

well name	_ ∧ (It)	1 (11)
GWP-10	2105573	185553
EW-1S 2	105932.021	86070.8029
EW-11 2	105927.5(1	86080.2383
EW-1D 2	105923.001	86089.3509

SOLUTION

Aquifer Model: Leaky

 $= 5.543E+4 \text{ ft}^2/\text{day}$

r/B = $\frac{0.1}{452}$. ft

Т

Mall Nama

Solution Method: <u>Hantush-Jacob</u>

 $S = \frac{0.001375}{\text{Kz/Kr}} = \frac{0.001}{0.01}$

SVP-4 PORT 6, EW PUMPING

Data Set: C:\...\SVP-4-6-EW_Pump_Test-NU.aqt

Time: 17:03:18 Date: 06/26/11

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY Test Well: EW Pump Test Test Date: 9/7-10/2010

AQUIFER DATA

Saturated Thickness: 452. ft

WELL DATA

	Pumping Wel		Observation Wells				
Well Name	X	(ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	210	5573 18	35553	∘ SVP-4-6	2	105820.7(1	86882.689
EW-1S	21059	32.021860	70.802	9			
EW-1I	21059	27.5(1860	080.238	3			
FW-1D	21059	23.0:1860	89.3509	9			

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 1.813E + 4 \text{ ft}^2/\text{day}$ S = 0.0008573 $Sy = \overline{0.5}$ $\beta = 0.3149$

SVP-9 PORT 5, EW PUMPING

Data Set: C:\...\SVP-9-5-EW_Pump_Test.-HJaqt.aqt

Date: 06/26/11 Time: 11:58:54

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: EW Pump Test
Test Date: 9/7-10/2010

WELL DATA

Pumping Wells Observation Wells

Well Name		X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
GWP-10		2105573	185553	• SVP-9-5	2105956.76	187687.25
EW-1S	2	105932.021	86070.802	9		
EW-1I	2	105927.5(1	86080.238	3		
EW-1D	2	105923.0(1	86089.350	9		

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = 8.243E+4 ft²/day S = 0.001421 Kz/Kr = 0.01

b = $\frac{311}{452}$. ft

Appendix I GWP-10 Pumping Well Data Analyses

MULTIPLE WELLS, GWP-10 PUMPING

Data Set: C:\...\Distance_Drawdown_All-Points_GWP-10_Pumping-HJ.aqt

Date: 06/22/11 Time: 13:11:03

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10
Test Date: 9/7/2010

WELL DATA

_ C\/D 44 0

 Pumping Wells

 Well Name
 X (ft)
 Y (ft)

 GWP-10
 2105573
 185553

Well Name	X (ft)	Y (ft)
○ EW-1D 2	105923.0(1	86089.350
○ EW-1I 2	105927.5(1	86080.238
EW-1S	105932.021	86070.8029
+ GWX-10019	105876.5{1	85981.2593
+ GWX-10020	106480.13	185775.454
MW-1S	106106.4(1	86328.080
○ MW-1I 2	106083.141	86321.746
○ MW-2I 2	106564.0(1	86423.590
□ SVP-3-3 2	106542.341	86966.005
△ SVP-4-6	105820.7(1	86882.689
◇ SVP-10-1 2	105899.1(1	86072.675
♦ SVP-10-3	105899.1(1	86072.675
△ SVP-10-5 2	105899.1(1	86072.675

2405507 0/404602 025

Observation Wells

MULTIPLE WELLS, GWP-10 PUMPING

Data Set: C:\...\Multiple_Wells_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:54:07

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

Well Name

GWP-10

WELL DATA

SVP-10-3

SVP-10-5

Pumping Wells Y (ft) X (ft) 2105573 185553

Well Name	X (ft)	Y (ft)
∘ EW-1D 2	105923.001	86089.350
∘ EW-1I 2	105927.5(1	86080.238
∘ EW-1S 2	105932.021	86070.802
∘ GWX-10019 2	105876.581	85981.259
∘ GWX-10020 2	106480.13	185775.45
∘ MW-1S 2	106106.4(1	86328.080

Observation Wells

2105899.1(186072.675 2105899.1(186072.675

∘ MW-1I	2106083.14186321.746
• MW-2I	2106564.0(186423.590
· SVP-3-3	2106542.34186966.005
∘ SVP-4-6	2105820.7(186882.689
∘ SVP-10-1	2105899.1(186072.675

EW-1S, GWP-10 PUMPING

Data Set: C:\...\EW-1S_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:10:09

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping	g Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	• EW-1S	2105932.021	86070.802	

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{2.618E+4}{0.1958}$ ft²/day S = $\frac{0.000658}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

EW-11, GWP-10 PUMPING

Data Set: C:\...\EW-1I_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:02:25

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumpin	Observation Wells					
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	∘ EW-1I	2	105927.5(1	86080.238

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{2.856E+4}{0.1756}$ ft²/day S = $\frac{0.000949}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

EW-1D, GWP-10 PUMPING

Data Set: C:\...\EW-1D_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 21:59:42

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: <u>GWP-10</u> Test Date: <u>9/7/2010</u>

WELL DATA

Pumpi	Observation Wells					
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	∘ EW-1D	2	105923.0(1	86089.350

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.736E+4}{0.1682}$ ft²/day S = $\frac{0.002363}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

GWX-10019, GWP-10 PUMPING

Data Set: C:\...\GWX-10019-GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:12:26

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pum	oing Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	∘ GWX-10019	2105876.58	85981.259	

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{2.968E+4}{r/B}$ ft²/day S = $\frac{0.0009774}{6.01}$ Kz/Kr = $\frac{0.01}{6.01}$

b = $\frac{311051}{452. \text{ ft}}$

GWX-10020, GWP-10 PUMPING

Data Set: C:\...\GWX-10020-GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:13:37

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: <u>GWP-10</u> Test Date: <u>9/7/2010</u>

WELL DATA

Pump	ing Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	∘ GWX-10020	2106480.13	185775.454	

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.688E+4}{0.2764}$ ft²/day S = $\frac{0.00114}{0.01}$ Kz/Kr = $\frac{0.00114}{0.01}$

MW-1S, GWP-10 PUMPING

Data Set: C:\...\MW-1S_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:29:38

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10
Test Date: 9/7/2010

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	 MW-1S 	2106106.4(1	86328.080	

SOLUTION

Aquifer Model: Leaky

= 3.447E+4 ft²/day

r/B = 0.1967b = 452. ft

Т

Solution Method: Hantush-Jacob

S = 0.0007684

 $Kz/Kr = \overline{0.01}$

MW-1I, GWP-10 PUMPING

Data Set: C:\...\MW-1I_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:21:26

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	• MW-1I	2	106083.141	86321.746

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.327E+4}{0.2179}$ ft²/day S = $\frac{0.001356}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

MW-2S, GWP-10 PUMPING

Data Set: C:\...\MW-2S_GWP-10_Pumping-NU.aqt

Date: 06/26/11 Time: 22:41:19

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

AQUIFER DATA

Saturated Thickness: 452. ft

WELL DATA

Pumping Wells			Observation Wells				
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)		
GWP-10	2105573	185553	MW-2S	2106577.52	186411.52		

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 1.877E+4 \text{ ft}^2/\text{day}$ S = 0.001625Sy = 0.02032 S = 0.3207

MW-2I, GWP-10 PUMPING

Data Set: C:\...\MW-2I_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 22:35:15

PROJECT INFORMATION

Company: CDM Client: U.S. EPA Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	Χ (ft) Y (ft)	
GWP-10	2105573	185553	• MW-2I	210656	4.0(186423.590	

SOLUTION

Aquifer Model: Leaky

Solution Method: Hantush-Jacob

 $= 4.122E+4 \text{ ft}^2/\text{day}$ Т = 0.001159= 1.0E-5r/B $Kz/Kr = \overline{0.01}$

= 452. ftb

SVP-10 PORT 8, GWP-10 PUMPING

Data Set: C:\...\SVP-10-8_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:50:20

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells				Observation W	/ells	
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	• SVP-10-8	2105	899.1(1	86072.675

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{7.719E+4}{0.1866}$ ft²/day S = $\frac{0.002353}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

SVP-10 PORT 5, GWP-10 PUMPING

Data Set: C:\...\SVP-10-5_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:34:46

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells				Observation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
GWP-10	2105573	185553	∘ SVP-10-5	2105899.13	186072.675

SOLUTION

Aquifer Model: <u>Leaky</u> Solution Method: <u>Hantush-Jacob</u>

T = $\frac{2.756E+4}{r/B}$ ft²/day S = $\frac{0.0003925}{Vz/Kr}$ Kz/Kr = $\frac{0.0003925}{0.01}$

r/B = 0.1154b = 452. ft Kz/Kr = 0.000

SVP-10 PORT 3, GWP-10 PUMPING

Data Set: C:\...\SVP-10-3_GWP-10_Pumping_HJ.aqt

Date: 06/21/11 Time: 23:32:55

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	• SVP-10-3	2105899.10	186072.675	

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.702E+4}{0.1705}$ ft²/day S = $\frac{0.002155}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

SVP-10 PORT 1, GWP-10 PUMPING

Data Set: C:\...\SVP-10-1_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:30:53

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	∘ SVP-10-1	2105899.10	186072.675	

SOLUTION

Aquifer Model: <u>Leaky</u> Solution Method: <u>Hantush-Jacob</u>

T = $\frac{2.818E+4}{0.1966}$ ft²/day S = $\frac{0.001847}{0.01}$ Kz/Kr = $\frac{0.01}{0.01}$

SVP-11 PORT 2, GWP-10 PUMPING

Data Set: C:\...\SVP-11-2_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:57:44

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY
Test Well: SVP-11-2

Test Well: <u>SVP-11-2</u> Test Date: <u>9/7/2010</u>

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	• SVP-11-2	2105597.	0(184603.935	

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{2.28E+4}{0.0045}$ ft²/day S = $\frac{0.0008816}{0.004}$

r/B = 0.2945b = 452. ft Kz/Kr = 0.01

SVP-2 PORT 4, GWP-10 PUMPING

Data Set: C:\...\SVP-2-4_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:03:04

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: <u>GWP-10</u> Test Date: <u>9/7/2010</u>

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	∘ SVP-2-4	2	106214.481	87385.723

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.788E+4}{0.1276}$ ft²/day S = $\frac{0.001325}{Kz/Kr}$ Kz/Kr = $\frac{0.01}{0.01}$

SVP-3 PORT 3, GWP-10 PUMPING

Data Set: C:\...\SVP-3-3_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:06:12

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: <u>GWP-10</u> Test Date: <u>9/7/2010</u>

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	∘ SVP-3-3	2106542.34	186966.005	

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.881E+4}{1.0E-5}$ ft²/day S = $\frac{0.001368}{Kz/Kr}$ Kz/Kr = $\frac{0.01}{0.01}$

SVP-4 PORT 6, GWP-10 PUMPING

Data Set: C:\...\SVP-4-6_GWP-10_Pumping-NU.aqt

Date: 06/26/11 Time: 22:49:30

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10
Test Date: 9/7/2010

AQUIFER DATA

Saturated Thickness: 452. ft

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
GWP-10	2105573	185553	∘ SVP-4-6	2105820.76	186882.689	

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

 $T = 2.06E+4 \text{ ft}^2/\text{day}$ S = 0.001062

 $Sy = \overline{0.5}$ $\beta = \overline{0.1}$

SVP-9- PORT 5, GWP-10 PUMPING

Data Set: C:\...\SVP-9-5_GWP-10_Pumping-HJ.aqt

Date: 06/21/11 Time: 23:27:28

PROJECT INFORMATION

Company: <u>CDM</u> Client: <u>U.S. EPA</u> Project: 3220-023

Location: Garden City, NY

Test Well: GWP-10 Test Date: 9/7/2010

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name		X (ft)	Y (ft)
GWP-10	2105573	185553	∘ SVP-9-5	2	105956.76	187687.25

SOLUTION

Aquifer Model: Leaky Solution Method: Hantush-Jacob

T = $\frac{3.814E+4}{4.05}$ ft²/day S = $\frac{0.0009566}{0.04}$

r/B = 1.0E-5b = 452. ft

Appendix J

Simulation of Aquifer Test and Model Refinement Memorandum

Memorandum

To: Project File

From: Dan O'Rourke, Karilyn Heisen and Bob Fitzgerald

Date: April 13, 2011

Subject: Old Roosevelt Field: Simulation of Aguifer Test and Model Refinement

The 72-hour aquifer test that was conducted at the Old Roosevelt Field (ORF) site in Garden City, New York between September 7-10, 2010 was simulated using the ORF groundwater model (CDM, 2007, 2008). The purpose of the simulation was to check the model's response against groundwater head data collected during the aquifer test. The ORF groundwater model was previously calibrated to measured groundwater head data collected in April and July 2006 and was used to evaluate various alternatives for the Feasibility Study (FS). The development of the groundwater model was documented in a technical memorandum dated August 13, 2007, which also serves as Appendix A of the Feasibility Study (FS).

The Record of Decision (ROD) calls for a pump and treat system to remediate a portion of the TCE and PCE plume upgradient of the existing community water supply wells owned and operated by Garden City Water District (Wells 10 and 11). In 2008, the ORF groundwater model was used to site an extraction well system to capture the 100 ppb portion of the plume, while minimizing impacts to head at the Garden City wells, while siting the wells within the property constraints at the time (e.g., within the parking lot). Due to the thickness of the plume, a three well system was recommended, consisting of 50-60 foot screen intervals and spanning a depth from 210 to 410 feet below grade. The total extraction rate was simulated at 250 gpm in which 70 gpm was pumped from the shallow and intermediate wells and 110 gpm was pumped from the deep recovery well.

In the summer of 2010, the extraction well system was installed and an aquifer test was conducted. In addition to the installation of the extraction wells, additional multi-port monitoring wells were installed since the last round of groundwater modeling. Two of these wells were installed within the immediate vicinity of the aquifer test and Garden City supply wells, SVP-10 (located immediately adjacent to the extraction wells) and SVP-11 (just downgradient of the Garden City supply wells). Groundwater head data were collected at these and several other wells within the vicinity (**Figure 1**, **Table 1**).

Table 1
Wells Monitored for Groundwater Head during 72 Hour Aquifer Test

Monitoring Well	Intervals Monitored (depth, ft)		
SVP-02	Port 4 (330-335)		
SVP-03	Port 3 (370-375)		
SVP-04	Port 6 (245-250)		
SVP-09	Port 5 (285-290)		
SVP-10	Port 1 (480-485), Port 3 (350-355), Port 5 (285-		
3VP-10	290), Port 8 (145-150), Port 10 (45-50)		
SVP-11	Port 2 (400-405)		
MW-01	MW-01i (305-315), MW-01s (235-245)		
MW-02	MW-02i (306-316), MW-02s (236-246)		
MW-03	MW-03i (304-314), MW-03s (234-244)		
N-10019	223-228		
N-10020	186-191		
EW-01	EW-01d (350-410), EW-01i (280-340),		
(extraction well)	EW-01s (210-260)		

Reference:

Average surface elevation from wells listed above (and Garden City Supply Wells) = 86.6 ft, msl Garden City Well 10 screen interval = 377-417 feet below grade Garden City Well 11 screen interval = 370-410 feet below grade

Groundwater Model Simulations

Supply Well Pumping Rates

The objective of the groundwater model simulations was to reproduce observed changes in head from the aquifer test at the various monitoring points. Although actual groundwater supply pumping data was collected at several times for Garden City Well 11 (N-03935) during the aquifer test, it was only estimated at Well 10, as the flow meter was not functional for that well. Estimates were made based on personal communication with the operators from Garden City and operation durations were assumed based on head responses during the test. Well 11 was pumping continuously throughout the duration of the test while Well 10 was generally operated from the early morning hours into the midafternoon and again for a brief period in the late evening.

There are numerous groundwater supply wells that surround the site operated by several different water purveyors. Detailed (hourly) pumping data were not available for those wells during the aquifer test. Regional groundwater supply pumping rates were also not available for 2010 at the time of this analysis.

Since 2010 groundwater pumpage data were not available for all wells, the transient groundwater model utilized for the FS and the subsequent design was used for the aquifer test analysis (average pumping and recharge from 2002-2007). Although average pumping and recharge conditions were used regionally, pumping at Garden City wells 10 and 11 was updated to observed conditions during the aquifer test (including pre and post test). However, because average conditions were used

Project File April 13, 2011 Page 3

regionally, the actual groundwater head data collected from the monitoring wells was not a calibration target. Rather, the calibration target was observed change in head, which in a sense is independent of actual head (e.g., if a 2 foot decrease in head in a well is observed with starting head at 53 feet, msl and a 2 foot head decline is simulated at a starting head of 55 ft, msl, the model is accurately simulating the aquifer's response to the pumping stress).

Time steps prior, during and after the pump test were reduced to 30 minutes. The pump test was initiated at 10:30 AM on 9/7/2010 and ended on 9/10/2010 at 10:30 AM. The model simulation was run from 12:00 AM on 9/5/2010 until 9/11/2010. Although the actual aquifer test from EW-01 was run for a 72 hour period, groundwater head within the study area is strongly influenced by the operation of the Garden City supply wells. Therefore, evaluating observed head prior to the start of the aquifer test and comparing that to simulated values is essentially a shorter term, cyclic aquifer test.

Stratigraphic Adjustments

Stratigraphy was adjusted to include a coarser zone within the middle Magothy, based on a gamma logging conducted at SVP-10 and a boring log that was developed from split spoon samples collected from the test well installation (**Figures 2 and 3**). With the additional data, correlations with previously collected boring logs enables the vertical extent of this zone to be somewhat defined, although the western extent is unknown due to a lack of geologic data west of Clinton Road. The hydrogeologic properties within the model were adjusted within the study area. A summary of hydrogeologic changes is summarized on **Table 2**.

Simulation Results

Model simulation results are shown on **Figures 4-12** (ordered in general proximity to EW-01 with SVP-10 being the closest and SVP-11 the furthest). The figures are displayed so that the initial response using the calibrated model from the FS is at the top of the figure, followed by two versions of hydraulic conductivity of the sandy zone which was incorporated into the model.

The initial focus of the model calibration was to SVP-10, as this well had numerous ports which were frequently monitored using pressure transducers and is closest to the extraction well (**Figures 4a,4b**). As shown on **Figures 4a and 4b**, the model simulates too much head decline in most of the observed ports using the original hydrogeologic properties from the calibrated model. The model provides a very close match to observed groundwater head in port 5 prior to the aquifer test, but simulates too much decrease in head in that port during the aquifer test. The model simulated too much head decline in all other ports both prior to and during the aquifer test.

In order to address the excessive simulated head decline, the sandy zone that was incorporated into the model was coarsened, as well as some other adjustments (see figures). The middle and bottom set of figures show two versions of this zone, one with a horizontal conductivity (Kh) of 80 ft/day (middle) and one with a relative very high Kh for the Magothy aquifer of 180 ft/day (bottom). Note

Table 2
Wells Monitored for Groundwater Head during 72 Hour Aquifer Test

Hydrogeologic Parameter		Original (FS model)	Adjusted	
Upper Magothy	Kh (ft/day)	35	60	
	Kv (ft/day)	0.6	0.6	
	Sy	0.25	0.15	
	Ss (ft ⁻¹)	1 x 10 ⁻⁶	2 x 10 ⁻⁶	
Middle Magothy	Kh (ft/day)	40	40	
	Kv (ft/day)	0.7	0.7	
	Sy	0.25	0.15	
	Ss (ft ⁻¹)	1 x 10 ⁻⁶	2 x 10 ⁻⁶	
Middle Magothy (coarse zone)	Kh (ft/day)		$80 - 180^1$	
	Kv (ft/day)	N/A	2.0	
	Sy	IN/A	0.15	
	Ss (ft ⁻¹)		2 x 10 ⁻⁶	
Basal Magothy	Kh (ft/day)	60	80	
	Kv (ft/day)	1.2	1.2	
	Sy	0.25	0.15	
	Ss (ft ⁻¹)	1 x 10 ⁻⁶	2 x 10 ⁻⁶	
Raritan Clay	Kh (ft/day)	0.3	0.3	
	Kv (ft/day)	8 x 10 ⁻⁴	1 x 10 ⁻⁴	
	Sy	0.25	0.25	
	Ss (ft ⁻¹)	1 x 10 ⁻⁵	1 x 10 ⁻⁵	

Note: two simulations were utilized in this evaluation, one using 80 ft/day for the coarser zone and a second using 180 ft/day. Kh = horizontal hydraulic conductivity and Kv = vertical hydraulic conductivity.

that the very high conductivity of 180 ft/day appears to provide the closest match to observed head for all ports of SVP-10, although the simulated response in ports 1 and 5 are better during the background period using a Kh of 80 ft/day.

The results of the aquifer test revealed a complex sequence in which changes in hydraulic conductivity did not have the same effect prior to and during the aquifer test. This is evident by the simulated response of port 5 in SVP-10. In order to match the observed head decline during the aquifer test, the sandy zone within the middle Magothy had to be coarsened to represent a simulated horizontal hydraulic conductivity of 180 ft/day. However, in doing that, the difference between the simulated head change and observed head change during the background period was somewhat increased. Furthermore, the Magothy aquifer generally fines upwards, in which the coarsest zone is within the basal Magothy, representing a high energy environment of deposition. Although it is certainly possible for a coarser zone to be within the middle Magothy, having that zone be more than double the Kh of the basal Magothy is questionable (nor is a coarse sand or gravelly zone noted in the boring logs, but rather fine to medium sand). Furthermore, having this very high horizontal conductivity zone doesn't seem to have a significant improvement on heads at most of the other monitoring wells included in

Project File April 13, 2011 Page 5

this analysis. Nevertheless, in order to match the head decline at SVP-10, a relatively very high hydraulic conductivity is required in the model. It is quite possible that this zone is very localized and although a more sandy zone appears to extend throughout the area in the middle Magothy, the hydraulic conductivity of this zone throughout the study area may in fact be closer to the 40-80 ft/day as shown in the top and middle figures. In general, although the higher Kh of 180 ft/d provides a better match to observed data at SVP-10, in some cases there is no significant difference in simulated response between the three variations (particularly for those monitoring points which are further away from the wells).

The head response in other monitoring wells is dominated by the operation of Garden City water supply Well 10 and head responses to the extraction well are masked by its operation. Therefore, the model head responses from surrounding monitoring wells focused on the pre-test pumping period (**Figures 5-12**). Due to the significant influence from the Garden City supply wells, the model target was focused on the pre-test period for wells other than SVP-10.

Further complicating the aquifer test is an interesting phenomenon that is apparent with several of the monitored wells in which the simulated head response prior to the aquifer test is in very good agreement with observed head, but somewhat off during the aquifer test. In many instances, the observed head slowly increases and then increases rapidly (this rapid increase is assumed to be due to Well 10 turning off). It is possible that this initial slow increase is in response to a lower pumping rate at Well 10, which is not reflected in the model. When this initial response is not included in the analysis and simulated head change is measured from a later time (when head is similar to the start of the aquifer test, approximately 5 hours after the start of the test), the simulated response is in much better agreement to the observed response. An example of this is shown on **Figure 13** for SVP-04, for the condition in which the sandy zone incorporated into the middle Magothy has a horizontal hydraulic conductivity of 80 ft/d. Head at SVP-04 was monitored from Port 6, which is above the newly incorporated sandy zone.

Discussion

The aquifer test at the Old Roosevelt Field site involved a significant amount of complexity in which heads were strongly influenced by the municipal supply wells. The extent to which heads were influenced by other wells (other than Garden City wells 10 and 11 and the extraction well), is somewhat unclear, particularly to wells that are further from the extraction well and the two Garden City wells. For example, as shown on **Figure 11**, the simulated and observed head changes for port 5 in SVP-09 indicate a reasonable match between simulated and observed head changes during the first cycle of the background period, however, the observed decrease in head is much higher than simulated during the early morning hours of 9/7/10. It is possible that surrounding water supply wells (non-Garden City) are influencing head in SVP-09 since additional head decline is observed. Surrounding wells may have been pumped at capacity for a period of time and these increased pumping rates at non-Garden City wells are not included in the model as pumping rates and duration data were not available. Further supporting this possibility is the sharp increase in head at the start of

Project File April 13, 2011 Page 6

the aquifer test, which may be an indication of one or more of these surrounding wells being shut down.

A calibration check was also conducted, comparing simulations run under the various hydraulic conductivities to observed head in April and July of 2006. For most observation wells, a better match between simulated and observed head was observed with an increase in the transmissivity of the middle portion of the Magothy aquifer. However, the extent to which this increase exists and to what degree remains uncertain. However, model simulations show a reasonable correlation with observed head change at several wells by increasing the horizontal hydraulic conductivity in a sandy zone to 80 ft/d.

Only a few monitoring points show a better correlation with observed head decline using a much higher horizontal hydraulic conductivity of 180 ft/day. There was no significant difference in simulated vs observed head between the original model and incorporating this much more transmissive zone, likely due to the somewhat limited extent to which the sandy zone was incorporated and the regional influence on groundwater head. Overall, however, simulated heads at the SVP wells were in somewhat better agreement with observed heads from the original calibration period (April and July 2006) by incorporating the coarser sandy zone within the middle Magothy.

The simulated 15 year groundwater contributing areas to EW-01 are shown on **Figures 14-16** for the original FS model properties as well as the two variations in the sandy zone which was incorporated during this analysis. Simulated pumping rates are 70 gpm in the shallow and intermediate extraction wells and 110 gpm in the deep extraction well, totaling 250 gpm. The simulated capture zone using the higher Kh for the sandy portion of the middle Magothy is somewhat more narrow than the other capture zones and extends slightly further north.

It's important to note that the original design and pumping rates were based on the areal and vertical extent of the TCE/PCE plumes in 2007. It is recommended that an updated plume extent be developed and pumping rates modified accordingly. Should the plume be much deeper than originally depicted, a deeper recovery well may be necessary to achieve capture. In addition, should there no longer be a significant shallow portion of the plume, it's possible that the shallow well may not be needed. **Figure 17** shows the simulated capture zones resulting from pumping the intermediate and deep extraction wells only, at 125 gpm each, respectively. As shown on the figure, a larger portion of the three zones is captured by these two wells. However, if a shallow portion of the plume still exists, then the shallow extraction well will be necessary.

cc: J. Dougherty (CDM)

Figure 2 Old Roosevelt Field Groundwater Model Northeast-Southwest Cross Section

Figure 3
Old Roosevelt Field Groundwater Model
Northeast-Southwest Cross Section

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 4a Simulated vs. observed head in SVP-10. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 4b Simulated vs. observed head in SVP-10. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 5 Simulated vs. observed head in MW-01. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 6 Simulated vs. observed head in MW-02. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 7 Simulated vs. observed head in NCDPW monitoring wells. Graphs on the left hand side are preaquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 8 Simulated vs. observed head in SVP-04. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 9 Simulated vs. observed head in SVP-03. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 10 Simulated vs. observed head in SVP-02. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 11 Simulated vs. observed head in SVP-09. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Original Properties from calibrated model UM = 35/0.60 fpd MM = 40/0.7 fpd Sy = 0.25, Ss = 0.1E-5

Coarse Zone added within MM (K=80/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Coarse Zone added within MM (K=180/2 fpd) modified storage properties slightly Sy = 0.15 for Magothy, Ss = 0.2 E -5 UM = Kh = 60 ft/d

Figure 12 Simulated vs. observed head in SVP-11. Graphs on the left hand side are pre-aquifer test and represent background (pumping influence of Garden City supply wells only). Graphs to the right are during the aquifer test (EW-01 pumping).

Figure 13
Simulated vs Observed Drawdown for SVP-04 (Port 6)
Simulated Dradown Measured from 9/7/10 15:29.

